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Abstract

We propose a new criterion for experimental design in the context of preference
learning. This new criterion makes direct use of the data available from a group of
subjects for which the preferences were already learned. Furthermore, we show
the connections between this criterion and the standard criteria used in experimen-
tal design. Empirical results on a real audiological data set, show a factor of two
speed-up for learning user preferences relative to random selection.

1 Introduction

Learning user preferences appears in many contexts. Consider, for example, the case in which
the parameters of a (medical) device have to be tuned such as to adapt them optimally to a user’s
preferences. In order to do this, we learn user’s preferences by means of experiments. However,
in many cases, especially the one mentioned above, this is a tedious process. To reduce the costs,
in terms of time invested and user burden, we would like to present to the user those experiments
which give the most information about his/her preferences;we are thus in the context of optimal
experimental design [11].

The goal of optimal design is to select experiments such thattheir outcomes give information for
making a model that maximizes some criterion of accuracy. One criterion is the accuracy with which
the parameters of the model can be estimated, which, in the Bayesian context, is equivalent to the
reduction in the entropy of the posterior distribution (over the model parameters) that results from
the outcome of the experiment, the so-calledD-optimal criterion[2].

Active learning [4, 8, 5] is the equivalent of experimental design in the context of supervised learn-
ing. In this scenario, the learning algorithm selectively samples the unlabeled data to achieve high
performance with relatively small training data.Query-by-Committee[8] is a method for active
learning, which selects examples that have maximum disagreement amongst an ensemble of hy-
potheses.

Coming back to the problem of learning preferences, assume that we have available preference
responses to some experiments from a group of people. We wantto efficiently learn the preferences
of a new person in as few experiments as possible, possibly bymaking use of the available data from
the other subjects. One way to do this is to select those experiments for which the other subjects
disagree the most. This is related to theQuery-by-Committeemethod mentioned above, with the
difference that the group of subjects, for which we already learned preferences, plays the role of the
ensemble of hypotheses. Using this idea, we developed a criterion for optimal experimental design
that makes use of the judgements of other subjects. We show that this new criterion is connected to
the standardD-optimal criterionand, furthermore, it has several advantages due to its interpretation
and simplicity.
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The paper is organized as follows. Section 2 is about criteria for optimal selection of experiments;
we start with a short presentation of the probabilistic choice models used; furthermore we present
a way to gather the data from the other subjects and how to makeuse of it in a new criterion
for experimental design; we show the connection with the standard D-optimal criterion and other
approximations of it. Experimental results on a real audiological data set are shown in Section 3.
Conclusions and directions for future research are presented in Section 4.

2 Criteria for optimal experimental design

2.1 Probabilistic choice models

Humans are very good in comparing options and expressing a preference for one of them. Therefore,
in many settings, preferences are learned from experimentsin which the person expresses a choice
for one of the presented options. Let us consider probabilistic choice models of the form

p(k; x, θ) =
exp

[

∑n

j=1
Akj(x)θj

]

Z(θ)
, (1)

with

Z(θ) ≡
m
∑

k=1

exp





∑

j

Akj(x)θj



 .

θ is ann-dimensional vector of parameters,A is a function which extracts features of the inputx
related to optionk, and there arem different options.p(k; x, θ) stands for the probability that a
subject with parametersθ prefers optionk when given inputx. For future reference we define the
derivatives of the log probabilities

g(k; x, θ) ≡
∂ log p(k; x, θ)

∂θ
, H(k; x, θ) ≡

∂2 log p(k; x, θ)

∂θ∂θT
. (2)

For m = 2 we have paired-comparison experiments and the model reduces to a logistic sigmoid
function, also known as the Bradley-Terry model [3]. Form > 2 we have multiclass classification
experiments and the model is a softmax function.

In order to learn a subject’s preferences, we treat the vector of parametersθ as a random variable.
Before taking into account the information from the actual experiments performed with the subject,
information available from other sources is incorporated in a prior distribution. After performing
an experiment and observing its outcome, we compute, using Bayes’ rule, the posterior distribution
over θ. To keep things simple, we start with a Gaussian prior. Because the product between a
Gaussian prior and the likelihood defined in Equation (1) is not a Gaussian, we approximate the
posterior distribution to a Gaussian. There are several alternatives for doing this approximation:
Laplace’s method [12], Assumed Density Filtering [15], Expectation Propagation [15]. The choice
of the approximation technique does not have too much influence on what follows.

2.2 Hierarchical modeling

Suppose that we have available preference responses to someexperiments from a group of people
(assume that we haveM subjects, each of them with his/her own set of experiments and responses).
We want to make use of this data, when learning the preferences of a new person. For this, we use
hierarchical modeling [10, 9] to derive a method for gathering data from previous subjects in a prior
for a new subject. The inference problems for each subject are coupled by giving them the same
prior, i.e., we setP (θi) = G(θi; µ, Σ) a Gaussian prior with the sameµ andΣ for all subjects. The
posterior for each subject is assumed to be (close to) a Gaussian with meanθ∗

i and varianceVi. We
would like to find the prior mean and variance that maximize the likelihood of all data.

The level II maximum likelihood values for the prior meanµ and the prior varianceΣ can be found
by applying Expectation-Maximization algorithm (see e.g., [9]), which reduces in this case to the
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iteration, till convergence, of the following equations:

µ =
1

M

M
∑

i=1

θ∗
i

Σ =
1

M

M
∑

i=1

(θ∗
i − µ)(θ∗

i − µ)T +
1

M

M
∑

i=1

Vi (3)

whereθ∗
i andVi are the posterior mean and variance for subjecti computed based on the previous

prior mean and variance. The first term in the righthand side of Equation (3) measures the variance
between the most probable estimates for different subjects, the second term the variance of the
probabilitiesP (θi) around these most probable estimates, averaged over all thesubjects. Thus, we
can make use of the available data from the group of other subjects, by taking as the prior of a new
subject, the GaussianG(θi; µ, Σ).

2.3 Whose side you’re on?

Furthermore, we want to make use of the data available from other subjects also when selecting the
experiments to perform with a new subjecti. Subjecti starts off with a prior learned from the other
subjects as explained in Section 2.2. The goal is to come up with a criterion for experiment selection
that makes direct use of the judgements of the other subjects. A very simple and straightforward
option would be to take those experiments for which the othersubjects disagree the most, according
to their responses given to the experiments. However, we will see further in Section 3, that this is
not good enough. We propose instead the following criterion:

Icommittee(x) =
1

M − 1

∑

j 6=i

∑

k

p̄\i(k; x) log

[

p̄\i(k; x)

pj(k; x)

]

−
∑

k

p̄\i(k; x) log

[

p̄\i(k; x)

pi(k; x)

]

, (4)

with pj(k; x) = p(k; x, θ∗
j ), whereθ∗

j is the maximum posterior solution for subjectj. p̄\i(k; x) is
the logarithmic average over allj 6= i and is defined as follows:

p̄(k; x) =
1

Γ(x)
exp

[
∫

dθ P (θ) log p(k; x, θ)

]

,

with

Γ(x) =
∑

k

exp

[
∫

dθ P (θ) log p(k; x, θ)

]

. (5)

The criterion proposed in Equation (4), is similar to the oneproposed in [14, 13], with the difference
that in our case we are in a different setting, preference learning, and that we have real subjects as
members of the committee.

Because of the log linear form in Equation (1), we immediately find

p̄(k; x) = p(k; x, µ) with µ =

∫

dθ P (θ)θ .

In words, the criterion is the disagreement between the other subjects (as measured through the
average Kullback-Leibler divergence) minus the disagreement between the current user and the (ge-
ometric) average of all the other subjects. The first term favors experiments on which the other
subjects disagree. The intuition behind the negative term is that it makes less sense to present exper-
iments on which the subject already formed an opinion different from that of the other subjects. In
other words, the most interesting experiments are those on which the other subjects disagree, with
the current subject (still) in the middle. Hence the title ofthe section.

2.4 Connection with D-optimal criterion

A popular criterion in experimental design is the expected log determinant of the variance of the
approximation. DefineV (k, x) to be the new variance after presentingx and observing responsek.
The so-called D-optimal criterion then reads

Idet(x) = −
∑

k

p(k; x) log detV (k, x) + log detV ,
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with p(k; x) the probability that the subject indeed gives responsek when presentedx, and where
we subtracted the log determinant of the current variance. The best experiment is the one that
maximizesIdet(x). To evaluate this, in principle we would have to recompute the variances as well
as the probabilitiesp(k; x) for all combinations of presentationsx and observationsk.

Lemma 1. In a first order approximation, assuming thatV (k, x) is close toV , we can simplify

Idet(x) ≈
∑

k

p(k; x, θ∗)g(k; x, θ∗)T V g(k; x, θ∗) ,

whereθ∗ is the maximum posterior solution. (Proof in the appendix.)

The criterion from Equation (4) (the disagreement in the committee making statements aboutx
induced by the uncertainty in the posterior) gives us another interpretation of the criterionIdet(x).

Lemma 2. In a lowest order approximation we can make the connection with the standard D-
optimal criterionIdet

Icommittee(x) =
1

2

∑

k

p(k; x, µ)g(k; x, µ)T Ṽ g(k; x, µ) , (6)

whereµ is the prior mean learned from all other subjects and

Ṽ ≡
1

M − 1

∑

j 6=i

(θ∗
j − µ)(θ∗

j − µ)T − (θ∗
i − µ)(θ∗

i − µ)T .

Proof. Making a second order Taylor expansion, the Kullback-Leibler divergence between proba-
bilities based onµ andθ∗ when these are close together is:

∑

k

p(k; x, µ) log

[

p(k; x, µ)

p(k; x, θ∗)

]

≈ −
1

2

∑

k

p(k; x, µ)(θ∗ − µ)T H(k; x, µ)(θ∗ − µ)

=
1

2

∑

k

p(k; x, µ)
[

(θ∗ − µ)T g(k; x, µ)
]2

, (7)

the first order term canceled since (see Equation (9) from appendix)
∑

k p(k; x, θ)g(k; x, θ) = 0 .
Using Equation (7) we obtain the result stated in the lemma.

So Icommittee(x) is somehow reminiscent of the “standard” D-optimal criterion with the following
main differences.

1. The gradientsg(k; x) are evaluated at the prior meanµ instead of at the current posterior
meanθ∗. This effect could be small sinceθ∗ is still close enough toµ for a sufficiently
accurate approximation of the gradients, in particular at the start when selecting the right
experiments is most important.

2. The current posterior varianceV is replaced bỹV . The idea here is that the effect of the
precise weighting of the gradients is not tremendously important. For example, in practice
Itrace from Equation (8), which corresponds to a weightingV 2 (Lemma 3), works about as
well asIdet, which corresponds to a weightingV . And again, at the start̃V is pretty close
to V , sinceθ∗ is then still close toµ andV to the prior varianceΣ.

2.5 Other design criteria

Alternatively, we can consider other criteria, which are basically approximations of the standard
D-optimal criterionIdet(x). An option is the weighted Kullback-Leibler divergence between the
current Gaussian approximation and the one after presenting x and observingk, Ikl . Again, we
would like to maximizeIkl(x) to find the “best” experiment. In a first order approximation,assuming
thatV (k, x) is close toV , it can be proved that

Ikl ≈ Idet
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i.e., the two criteria are indistinguishable.

Instead of the log determinant, we can also take the trace of the variance, the so-called A-optimal
criterion, as our criterion for selecting the best experiment. We define

Itrace(x) = −
∑

k

p(k; x)TrV (k, x) . (8)

Lemma 3. In a first order approximation, the trace criterion boils down to

Itrace(x) =
∑

k

p(k; x, θ∗)g(k; x, θ∗)T V 2g(k; x, θ∗) .

3 Experiments

We evaluate different criteria on a data set of audiologicalexperiments described in [1]. The data
set consists of predictions of sound quality of 14 normal hearing and 18 hearing impaired persons.
Each person was subjected to 576 paired-comparison tests ofthe form(x1, x2, k), wherek = {1, 2}
denotes whether sound samplex1 or x2 was preferred by the patient, respectively. We used this data
set to address the following two questions:

1. Can we use the already learned preferences of other subjects to better learn the preferences
of the current subject?

2. Can we learn faster by optimally selecting the experiments to present to a subject?

In a simulation, one subject was left out, and the hierarchical method, described in Section 2.2, was
used to gather data from the rest of the subjects in a probability distribution, which was used as the
starting prior for the left-out subject. The data set for theleft-out subject, was split into training
(used for learning preferences) and testing (the accuracy of the predictions on the test data was used
as a measure of how much we learned about subject’s preferences). For each subject, we averaged
the results across several splits using cross-validation.Furthermore, the results were averaged over
all subjects.
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Figure 1: Left: percentage of the number of times the prediction accuracy using the learned prior is
better than the prediction accuracy with a flat prior. Right:percentage of the number of predictions
on which the two models (with the learned and with a flat prior)disagree. The NH and HI labels refer
to the simulations on the data set from normal-hearing and hearing-impaired subjects, respectively.

In order to answer the first question, we compared the performances obtained using the hierarchical
prior versus a flat prior which assumes no information about subject’s preferences. We made pre-
dictions for the outcomes of the experiments from the test data, using the model from Equation (1);
whereθ is the mean of the posterior distribution of a subject which resulted either by starting with
the hierarchical prior or with a flat prior. The righthand side of Figure 1, gives the percentage of
predictions on which the two models (the one with the hierarchical and the one with flat prior) dis-
agree, with respect to the total number of predictions made.The lefthand side of Figure 1, shows
the percentage of correct predictions made using the hierarchical prior, with respect to the number
of predictions on which the two models disagree. Especiallyin the beginning of the learning pro-
cess, with few experiments, the model with a prior learned from the community of other subjects
outperforms the model with a flat prior. Thus, we can affirmatively answer the first question.
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In order to answer the second question, we compared the performances obtained by random versus
optimal selection of experiments. For each subject, we started with the prior learned from the other
subjects, and updated this prior based on the information from experiments which were selected
either random or optimal. The optimal selection was implemented usingIcommittee criterion. In
practice, the committee criterion performs about the same as the D-optimal criterion, or any of
its approximations. We computed the number of experiments needed by random selection to get
the same accuracy on the test data as with the optimal selection. Figure 2 shows that, indeed by
optimally selecting experiments, the preferences can be learned faster. We implemented a variant
of optimal selection where we choose experiments accordingto the difference between the number
of subjects which preferred the first alternative and the number of subjects which preferred the
second alternative. The experiments for which this difference is small are considered hard to predict.
The plots show that just presenting those experiments whichare hard to predict according to the
responses given by the other subjects, does not perform muchbetter than random selection.
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Figure 2: The number of listening experiments needed using random selection (on they-axis) to get
the same accuracy as with the optimal selection (on thex-axis). The optimal experiment selection is
implemented by presenting those experiment which are hard to predict according to other subjects
responses (small dots) and actively using the pool criterion (large dots).

Figure 3 shows the connections between the criteria for experiment selection discussed in this paper.
The plots are shown for one normal hearing subject. We started with the prior learned from the
group of other normal hearing subjects, and made updates of this prior by taking into account the
information from 10 randomly selected listening experiments. At this point, we computed the scores
of each of the criteria for one randomly chosen listening experiment. We made scatter plots of the
ranks of these scores; in the title of each plot, we wrote the Spearman correlation coefficient between
the two criteria for which the plots are displayed. From the first plot from the left, we see that the
approximation of the D-optimal criterion, as stated in Lemma 1, is very accurate. The fifth plot
from the left, shows the scores computed using theIdet criterion and the criterion which selects the
experiments which are hard to predict; as expected, these two are not connected. Furthermore, in
the rest of the plots, we can see that the different criteria are indeed strongly correlated, as predicted
from the theory in Section 2.

4 Conclusions and discussions

We discussed and analyzed criteria for optimal experimental design, and showed that for the prob-
abilistic choice model introduced in section 2.1 they are all connected to the standard D-optimal
criterion. A direction for future work is to extend this analysis to other types of models. We pro-
posed a new criterion that makes direct use of the judgementsof other subjects. The new criterion,
in practice, works about as well as (any other sensible approximation of) D-optimal experimental
design. The advantage of this new criterion could be in the interpretation and the (relative) simplic-
ity: it is only based on probabilities computed from maximuma posteriori solutions, i.e., there is no
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Figure 3: Scatter plots for different criteria for experiment selection. Title of each plot: the Spearman
correlation coefficient between the two criteria for which the plot is displayed. See the main text for
further details.

need to keep track of variances or to compute gradients. Furthermore, it is efficient to compute since
the first term as well as the average can be computed beforehand.
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Appendix

Lemma 4. For anyx andθ we have the following relation between second derivatives and first
derivatives.

∑

k

p(k; x, θ)H(k; x, θ) = −
∑

k

p(k; x, θ)g(k; x, θ)g(k; x, θ)T ,

with g andH the first and second derivatives defined in Equation (2).

Proof. We use shorthand notationpk = p(k; x, θ), gkj = gj(k; x, θ), etc., omitting the dependen-
cies onx andθ. Write uk ≡

∑

j Akjθj and thuslog pk = uk − log Z. Then it is easy to see
that

gkj = Akj −
∂ log Z

∂θj

, hk,ij = −
∂2 log Z

∂θi∂θj

= hij ,

i.e., the second derivative is in fact independent ofk. Furthermore
∂ log Z

∂θj

=
1

Z

∂Z

∂θj

=
∑

k

pkAkj

∂2 log Z

∂θi∂θj

=
∑

k

Akj

∂pk

∂θi

=
∑

k

Akjpkgki =
∑

k

pkAkiAkj −
∑

k

pkAki

∑

k′

pk′Ak′j ,

and thus

gkj = Akj −
∑

k′

p′kAk′j

hk,ij = −
∑

k′

pk′Ak′iAk′j +
∑

k′

pk′Ak′i

∑

k′′

pk′′Ak′′j . (9)

We then have
∑

k

pkhk,ij = −
∑

k

pkAkiAkj +
∑

k

pkAki

∑

k′

pk′Ak′j

= −
∑

k

pk

(

Aki −
∑

k′

pk′Ak′i

)(

Akj −
∑

k′

pk′Ak′j

)

= −
∑

k

pkgkigkj .

Lemma 1. In a first order approximation, assuming thatV (k, x) is close toV , we can simplify

Idet(x) ≈
∑

k

p(k|x, θ∗)g(k; x, θ∗)T V g(k; x, θ∗) .

Proof. In a first order approximation we have

V (k, x)−1 ≈ V −1 −
∂2 log p(k|x, θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ∗

,

where we ignored the change from the oldθ∗ to a new maximum a posteriori solution depending on
k andx. Again making a first order expansion, assuming thatV (k, x) is close toV , we have

log detV (k, x)−1 ≈ log detV −1 − Tr [V H(k; x, θ∗)] .

The probability that the subject indeed gives the responsek when presentedx follows by integrating
p(k|x, θ) over the current posterior:

p(k|x) ≈

∫

dθ p(k; x, θ)G(θ; θ∗, V ) ≈ p(k; x, θ∗) +
1

2
Tr

[

V
∂2p(k; x, θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ∗

]

,

with θ∗ the maximum a posteriori solution andV the corresponding variance. Again in lowest order
we can ignore the correction uponp(k; x, θ∗) and arrive at

Idet(x) ≈ −
∑

k

p(k|x, θ∗)Tr [V H(k; x, θ∗)] .

Lemma 4 then gives the result.
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