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Abstract. This study investigates transfer learning applied to output
kernel regression for protein-protein interactions network inference.

1 Introduction

There has been a recent interest in devising new techniques and improving ex-
isting ones for mining various structured data types such as the ones arising,
for example, in biology. Mining the protein interactions graph of a species, also
known as protein-protein interactions (PPI) network inference [9], can give useful
information to biologists about which proteins might interact.

A technique that has been recently applied to protein-protein network in-
ference is output kernel regression [10, 2]. The idea of this method is to learn a
mapping from inputs to a feature space associated with the outputs. The key as-
pect of this method is that the existing structure in the outputs can be exploited
in the learning.

We consider a target species for which we want to predict the unknown
links in its protein interactions graph. With each node in the graph there is
associated information about that protein, such as gene expression data, location
information or phylogenetic profile. Furthermore, the PPI networks from other
species and the set of orthologs between the proteins in the target species and
each of the reference species are also available. This data available from other
species can be used to improve the performance of predictions of unknown links
in the target species. This paradigm, known as transfer learning or multi-task
learning, has been applied in various learning situations [4, 1]. In this study,
we investigate how to incorporate the information available from the reference
species, i.e., transfer learning, in order to improve the performance of the output
kernel regression for protein-protein network inference. We propose a method
based on a so-called converter function from the reference species to the target
species. The underlying idea of the converter is to increase the training set of
the target species by converting the output space of the reference species to the
output space of the target species.



In Section 2 we describe the general framework of output kernel regression
for PPI network inference and its extension for transfer learning. In Section 3 we
evaluate it empirically using yeast as the target species. In Section 4 we conclude
and give some directions for future research.

2 Framework

Let G = (V, E) be the undirected graph modeling the PPI network of the target
species, where V is the set of vertices and E ∈ V × V is the set of edges. We
assume that each vertex v can be described by some features in some input
space x ∈ X .

The input data consists of the information associated with each vertex of the
graph and the output data is the adjacency matrix of the graph. The key aspect
of this learning problem is the structure in the outputs that can be exploited
in the learning. In order to do this, we construct a positive definite symmetric
kernel κψ : V × V → R derived from the adjacency matrix of the graph. This
kernel implicitly defines a feature map ψ : V → Hψ such that

κψ(v, v′) = ⟨ψ(v), ψ(v′)⟩Hψ
.

We choose for κψ the diffusion kernel [7], which has the following matrix associ-
ated with it

Kψ = exp(−βL), where L = D −A ,

with D the diagonal matrix of node connectivities, A the adjacency matrix, and
β > 0 a parameter which controls the degree of diffusion. κψ(v, v′) is high for
adjacent vertices and small for non-adjacent ones, thus, ψ(v) is close to ψ(v′) in
Hψ when there is an edge between the vertices v and v′. The diffusion kernel is
a way to capture the long-range relationships between data points induced by
the local structure of the graph.

In the same way, a positive definite symmetric kernel κϕ : X × X → R
constructed on the inputs implicitly defines a feature map ϕ : X → Hϕ such
that

κϕ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩Hϕ
.

This kernel can be computed using, for example, the Gaussian kernel

κϕ(x,x′) = κGauss(x,x
′) ≡ exp

− 1

2σ2

∑
j

(xj − x′j)2
 .

The idea of output kernel regression is to learn a mapping from inputs to the
feature space associated with the outputs. We choose this mapping as

h : X → Hψ, h(x) =
∑
i

αiψ(vi) ⟨ϕ(xi), ϕ(x)⟩Hϕ
. (1)



where i runs over the training points. This choice for h has the advantage that
even though it is define using the feature map ψ, when computing inner products
it uses only kernel values and does not need to access the implicit feature map
ψ, i.e.,

⟨h(x), h(x′)⟩ =
∑
i,j

αiαj ⟨ψ(vi), ψ(vj)⟩Hϕ
⟨ϕ(xi), ϕ(xj)⟩Hϕ

.

The mapping h is an approximation to ψ, thus, in order to determine if there is
an edge between the vertices v and v′ we will threshold the value of the output
kernel

κψ(v, v′) = ⟨h(x), h(x′)⟩ .
The mapping h can be learned by solving the following optimization problem

argmin
h

∑
i

||ψ(vi)− h(xi)||2Hψ
+ λ||h||2 . (2)

where λ > 0 is a regularizer. There is a closed-form solution to the optimization
problem from above.

Transfer Learning

Let G1 = (V1, E1) be the undirected graph modeling the protein interactions
graph of a reference species. For the reference species we know only the adjacency
matrix of the graph and do not have information associated with the vertices
like in the case of the target species. As we did for the target species, we consider
the implicit feature map for the PPI network of the reference species, ψ1, and
the space associated with it, Hψ1 . The connection between the target and the
reference species is a set of ortholog proteins, i.e., a subset of V has a one-to-one
correspondence with a subset of V1. Let V = {v1, . . . vo} ∪ {vo+1, . . . vn} and
V1 = {v11 , . . . v1o} ∪ {v1o+1, . . . v

1
n1
} then

v1 ←→ v11 ,

. . .

vo ←→ v1o .

The transfer learning is based on a converter function from the reference
species to the target species. The idea is to increase the training set for the
target species on which the mapping h is learned by incorporating the data from
the reference species. Let Otrain be the set of orthologs whose absence/presence
of links in the target species is known (orthologs in the train set) and Otest
be the set of orthologs whose absence/presence of links in the target species is
not known (orthologs in the test set). The mapping h is learned by solving the
following optimization problem:

argmin
h

∑
i

||ψ(vi)− h(xi)||2Hψ
+ λ||h||2

+ λtransfer
∑

i∈Otest

||g1→t(ψ1(vi))− h(xi)||2Hψ
(3)



with the last term transferring the information from the reference to the target
species and λtransfer ≥ 0 . The converter g1→t maps the output space of the
reference species (Hψ1) to the output space of the target species (Hψ). This
converter function is learned on the set of orthologs whose links are known both
in the target and in the reference species, i.e., the orthologs from the training
set:

argmin
g1→t

∑
i∈Otrain

||ψ(vi)− g1→t(ψ1(vi))||2Hψt
+ λconverter||g1→t||2 ,

g1→t(ψ1(v)) =
∑

j∈Otrain

βjψ(vj) ⟨ψ1(v), ψ1(vj)⟩Hψ1
. (4)

The definition of the converter function from above has the same form and
advantages as the definition of the prediction map from Equation (1).

This idea can be extended to include the information from multiple reference
species by adding extra terms in the optimization from Equation (3), each extra
term corresponding to one reference species.

3 Empirical Evaluation

In this section we evaluate empirically the transfer learning approach for PPI
network inference described in the previous section.

Data. We considered the baker’s yeast (Saccharomyces cerevisiae) as the
target organism. We used the yeast PPI network data of high-confidence physical
protein-protein interactions also used in [5]. It consists of 2438 interactions that
link 984 proteins. Each protein has associated with it information about its
gene expression, location information and phylogenetic profile which was used
to construct the input kernel. The following species were considered as reference
species: Schizosaccharomyces pombe –fission yeast, Mus musculus –house mouse,
Arabidopsis thaliana –plant. The PPI networks of the reference species were
extracted from the String.db database (http://string-db.org/). This database
has 7 types of interactions between proteins (neighborhood, fusion, occurrence,
coexpression, experiments, database, textmining) from which we considered only
the interactions which come from experiments. The set of orthologs between the
target species and each of the reference species was obtained from the Inparanoid
database (http://inparanoid.sbc.su.se/). The fission yeast has 271 orthologs with
the target species, the mouse has 147 orthologs and the plant has 120 orthologs.

Protocol. We conducted experiments on the data set described above to
determine whether the extra term (or terms for multiple reference species) in the
optimization from Equation (3) improves the performance. The performance was
evaluated as a function of the parameter λtransfer. We fixed the other parameters
of the model except λtransfer to its optimal values determined in the no-transfer
case, i.e., σ = 4, β = 3 and λ = 0.0001 and we also fixed λconverter = 0.0001.
Further, the data set was randomly split 10 times into training and testing
with different percentage for the size of the training data 10%, 15% and 20%.



The model was learned on the training set for λtransfer ∈ 0 : 0.1 : 1 and the
performance was measured using area under the ROC curve (AUC) computed
on the testing set.

Results. Figure 1 plots the AUC values as a function of the parameter
λtransfer. The three plots on the left side correspond to three sizes of the training
data, 10%, 15% and 20% and one reference species, the fission yeast. The error
bars give the standard deviation to the mean for the 10 runs. The optimal value
λtransfer > 0 suggests that the information from the reference species improves
the performance. The improvement is bigger for a small size of the training set
and decreases as the training set gets bigger, which is a behavior observed in
most of the multi-task learning situations. The plots on the right-hand side are an
extension of the three plots from the left-hand side to multiple reference species:
results for one reference species (fission yeast) are plotted with solid lines, results
for two reference species (fission yeast and plant) are plotted with dashed lines,
and results for three reference species (fission yeast, plant and house mouse) are
plotted with dotted lines. The plots suggests that including multiple reference
species as multiple sources of information increases the performance.
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Fig. 1: Plots of the AUC values as a function of the parameter of the tranfer
learning λtransfer. Left: The three plots correspond to three sizes of the training
data, 10%, 15% and 20%, the error bars give the standard deviation to the mean
for the 10 runs. Right: The plots are an extension of the three plots from the left-
hand side to multiple reference species: results for one reference species (fission
yeast) are plotted with solid lines, results for two reference species (fission yeast
and plant) are plotted with dashed lines, and results for three reference species
(fission yeast, plant and house mouse) are plotted with dotted lines.

4 Discussions

We described a method for transfer learning which increases the training set of a
target species using a converter from the output space of the reference species to



the output space of the target species. We conducted experiments using baker
yeast as the target species. The experiments show that the transfer learning
improves the performance, particularly with a smaller size of the training set.
Furthermore, we see that considering multiple reference species increases the
performance.

Transfer learning has been recently considered for predicting PPIs. The ap-
proach of [6] is directed to simulatanously learning PPI networks of multiple
species in a setting different then ours, i.e., genomic data and PPIs are avaial-
ble for all species, while we consider that genomic data is available only for the
target species. [8] is another recent study where the some extra information is
added in a semi-supervised multi-task learnings etting. The extra information is
PPI that are so-called ’weakly labeled’

There are several directions for future research to consider. i) Methods which
involve other cost terms for transferring the information from other species; ii)
Other prediction function; for example, the prediction function used for string
to string mapping in [3].
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