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1. Introduction
In many supervised learning tasks it can be costly or infeasible to obtain ob-
jective, reliable labels from experts. We may, however, be able to obtain a
large number of subjective, possibly noisy, labels from multiple annotators.
Typically, annotators have different levels of expertise (i.e., novice, expert)
and there is considerable disagreement among annotators.
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Figure 1: Regression with labels from multiple noisy annotators.

In recent years there has appeared a lot of interest in multi-annotator prob-
lems without an absolute gold standard. Previous work, however, has focused
mainly on parametric models [1, 3, 4]. We present a flexible non-parametric
approach based on Gaussian processes for regression with multiple labels.

2. Gaussian Process Regression

Let D be a data set of N observed D-dimensional input vectors X = {xn}Nn=1

and corresponding real-valued outputs Y = {yn}Nn=1. We assume that out-
puts follow from a latent function f that are corrupted by zero mean Gaussian
noise, i.e., y = f (x)+ε with ε ∼ N (0, σ2). A Gaussian process defines a prior
distribution over functions f giving a multi-variate Gaussian distribution on any
finite subset of latent variables, i.e., the function values f (x). The Gaussian
process is completely specified by a mean function (which we assume zero
without loss) and a covariance function. In particular p(f |X) = N (f |0,KNN)
with Kij = k(xi,xj) for which we used the well-known Gaussian (or squared-
exponential) covariance function. For more details see [2].

3. Multi-Annotator Regression

We assume that observations are obtained from M annotators, each pro-
viding noisy labels that adhere to a Gaussian distribution N (0, σ2

m) where σ2
m

represents the unknown noise level of the m-th annotator. Let
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with m ∼ i denoting the sum over annotators m that annotated sample xi. It
can be shown that the multi-annotator predictive distribution is given by:

fD(x) = k(x,X)(K + Σ̂)−1Ŷ ,

covD(f (x), f (x′)) = k(x,x′)− k(x,X)(K + Σ̂)−1k(X,x′),
(2)

which closely follows the single-annotator model, but uses a weighted output
Ŷ and covariance Σ̂ that is no longer homogeneous as it depends on the

data sample. Hyperparameters can be optimized automatically by minimizing
the negative log marginal likelihood:
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4. Experiments

We validated the Gaussian process multi-annotator model on the ‘Boston
housing’ dataset by randomly annotating a portion of the data set using three
annotators with noise levels of 0.25, 0.5, and 0.75. We report the root mean
squared error (RMSE(x, y) =

√
1
N

∑N
i=1(xi − yi)2) for both the prediction of the

targets and the hyperparameter prediction of the annotator noise-levels.

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

percentage of annotations for each annotator

R
M

S
E

 (
ta

rg
e
ts

)

Accuracy comparison between different regression models

 

 

Multi−Annotator

Averaged Training Data

Annotator 1

Annotator 2

Annotator 3

Ann. 1−3 Weighted (inv. var)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

percentage of annotations for each annotator

R
M

S
E

 (
h

y
p
e

rp
a

ra
m

e
te

rs
)

Accuracy comparison between different regression models

 

 
σ

1
 by Multi−Annotator

σ
2
 by Multi−Annotator

σ
3
 by Multi−Annotator

σ
1
 by Annotator 1

σ
2
 by Annotator 2

σ
3
 by Annotator 3

Figure 2: The RMSE of the Gaussian process multi-annotator model, the
Gaussian process fitted to the average response, and Gaussian processes
fitted to each individual annotator on the ‘Boston housing’ dataset (506 in-
stances, 13 features). Left: RMSE for predicted targets. Right: RMSE for
predicted noise-level hyperparameters.

5. Conclusions

The Gaussian process framework provides a principled non-parametric
framework that can automatically estimate the reliability of individual annota-
tors from data without the need of prior knowledge. Experimental results show
that the proposed Gaussian process multi-annotator model outperforms mod-
els that either average the training data or weigh individually learned single-
annotator models.
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