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Abstract. This paper discusses a kernel ridge regression (KRR) model
for motion estimation in radiotherapy. Using KRR, dense internal motion
fields are estimated from high-dimensional surrogates without the need
for prior dimensionality reduction. We compare the proposed model to a
related approach with dimensionality reduction in the form of principal
component analysis and principle component regression. Evaluation was
performed in a simulation study based on nine 4D CT patient data sets
achieving a mean estimation error of 0.84 ± 0.21mm for our approach.

1 Introduction

Respiratory motion is of concern for several medical procedures in the thoracic
and abdominal areas. In external beam radiation therapy, intra-fractional mo-
tion may lead to underdosing the clinical target volume (CTV), if not addressed
properly [1]. The patient is irradiated according to a treatment plan based on CT
imaging, defining an optimized dose distribution. However, respiratory motion
typically leads to displacement of the CTV, resulting in insufficient dose in the
target and thus the potential survival of malignant cells. One option is to intro-
duce additional margins covering the extent of the CTV’s motion at the cost of
higher dose to healthy tissue. More preferably, real-time motion estimation can
be used to either restrict exposure time to certain parts of the respiratory cycle
(gating) or adjust the beam according to the target volume (tracking).

For real-time motion estimation, a patient-specific motion model can be
trained pre-procedurally connecting a highly correlated external surrogate sig-
nal to the corresponding internal deformation [2]. The ground-truth deforma-
tion field is usually obtained from 4D imaging by registration to a reference
phase. In recent literature, various methods for ground-truth-to-surrogate corre-
spondence estimation such as (multi-)linear regression [3] are employed. Then,
intra-procedural acquisition of just the surrogate signal allows for inference of
the internal motion field [2].
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Wilms et al. [3] investigated multi-variate regression approaches based on
range imaging among other surrogates. While these approaches operate directly
on the acquired data, others also based on multi-linear regression incorporate
an additional generalization step in the form of Principal Component Analysis
(PCA) to describe both the internal and external variation of a patient’s breath-
ing cycle [4,5]. As an additional benefit, the reduced dimensionality in feature
space also reduces the complexity of the regression problem. Another way of
dealing with high-dimensional domains is to incorporate kernels into the regres-
sion. Li and Xing [6] investigated kernel-based respiratory motion estimation but
only used a 1-D surrogate. The major benefit of such a kernel approach is its
ability to represent non-linear mappings between internal and external motion.

In this work, we present a correlation model based on Kernel Ridge Re-
gression (KRR) to estimate dense internal motion fields from two marker-less
high-dimensional surrogates: range imaging [7] and X-ray fluoroscopy. We eval-
uate our approach in a simulation study on 4D CT data of nine cancer patients
and compare it to Principal Component Regression (PCR).

2 Materials and Methods

First, we will introduce our notation. Then, the two correlation approaches will
be covered: a) related work in the form of PCR and b) KRR without prior
dimensionality reduction. An overview of our data and evaluation methods will
conclude the section.

2.1 Data Matrices

The respiratory motion model can be trained pre-procedurally from 4D imaging
such as the planning CT for radiotherapy. Performing demons-based non-rigid
registration [8], n internal deformation fields {t1, . . . , tn}, ti ∈ R

dt are obtained,
that are stored column-wise in the data matrix T ∈ R

dt×n. Similarly, S ∈ R
ds×n

denotes the n corresponding surrogate observations si ∈ R
ds . These can either

be the patient’s thorax surface motion fields or fluoroscopic images at the same
breathing phase. For training purposes, they are extracted from the 4D CT as
well (see Sec. 2.4).

2.2 Principal Component Regression

Principal Component Analysis. PCA is a popular linear dimensionality re-
duction technique [9]. It can be used to decompose a given data set into mutually
orthogonal modes of variation, called principal components. With the first few
components often being sufficient to represent more than 90% of the variance
present in the data set, the number of basis vectors is less than that of the origi-
nal domain. Using PCA, the data sets S ∈ R

ds×n and T ∈ R
dt×n can, therefore,

be represented by a set of features F S ∈ R
ps×n and F T ∈ R

pt×n of reduced
dimensionality.
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Multi-linear Regression. Let F S ∈ R
ps×n and F T ∈ R

pt×n, where n is the
number of observations and ps, dt denote feature dimensionality chosen for the
PCA. Correlation between the target and the surrogate domain can be formu-
lated as a multi-linear regression problem [4]. Combined with Tikhonov regular-
ization, this is also known as (standard) Ridge Regression with the corresponding
objective function

argmin
W

(
1

2
||WF S − F T ||

2
F + α

1

2
||W ||2F

)

, (1)

where || · ||F is the Frobenius norm. The closed-form solution involves the Moore-
Penrose pseudo-inverse

W = F TF
⊤

S
︸ ︷︷ ︸

pt×ps

(F SF
⊤

S
︸ ︷︷ ︸

ps×ps

+αIps
)−1 ∈ R

pt×ps , (2)

which is computed using singular value decomposition (SVD). For low-dimensional
feature spaces (ps, pt ≤ n) W can be calculated explicitly.

2.3 Kernel Ridge Regression

The KRR method [9] is a regularized least squares method for classification and
regression. For high-dimensional data T and S an explicit computation of W as
presented in Eqn. 2 without prior dimensionality reduction is computationally
expensive (as ds, dt ≫ ps, pt). Fortunately, Eqn. 2 can be rewritten to:

W = TS⊤

︸ ︷︷ ︸

dt×ds

(SS⊤

︸ ︷︷ ︸

ds×ds

+αIds
)−1

= T
︸︷︷︸

dt×n

(S⊤S
︸ ︷︷ ︸

n×n

+αIn)
−1 S⊤

︸︷︷︸

n×ds

. (3)

Making use of the kernel trick, the observations si are implicitly mapped to an
even higher-dimensional Reproducing Kernel Hilbert space [10]:

Φ =
[

φ(s1), . . . ,φ(sn)
]

. (4)

When predicting a target tpred from a new observation snew, explicit access to
Φ is never actually needed:

tpred = T
(

Φ⊤Φ+ α In

)−1

Φ⊤φ(snew)

= T (K + α In)
−1

κ (snew) . (5)

With Kij = φ (si)
⊤
φ (sj) and κ (snew)i = φ (si)

⊤
φ (snew), the prediction

can be described entirely in terms of inner products in the higher-dimensional
space. Not only does this approach work on the original data sets as well as the
principal component representations, it also opens up ways to introduce non-
linear mappings into the regression.
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2.4 Data and Evaluation

Evaluation was conducted on nine 4D CT data sets of lung tumor patients
treated at UK Erlangen. Each data set provided nine respiratory deformation
fields of spacing 0.97 × 0.97 × 2.5mm3, which were manually cropped to an
internal region of interest (ROI) to represent the ground truth. For simulating
the range imaging surrogate data, the fields were interpolated at a surface mesh
directly extracted from the CT acquisition at the reference phase. This provided
between 2252 and 4667 surface points for each patient. For fluoroscopy, Digitally
Reconstructed Radiographs (DRR) with 1024 × 768 pixels and 0.39mm pixel
spacing were generated by forward-projecting the 4D CT volumes.

Leave-one-out evaluation was performed for each of the patients individu-
ally. Each phase was subsequently tested and, for this purpose, removed from
the training sample together with its two neighbors. Estimation accuracy was
assessed by the L2-norm of the residual vectors between estimated field and
ground truth. Parameters for regularization and the Gaussian kernel were de-
termined using grid search in the same leave-one-out manner. Similarly, internal
model accuracy was determined, given perfect estimation of the weights from
the surrogate. For PCR, the generalization ability of the internal model is the
limiting factor. For KRR, each deformation field ti was compared to the optimal
guess ti,optim = Tai, where ai = argminãi

(
||T ãi − ti||

2
2

)
. This deformation field

arises from interpolation weights that are optimal in a least-squares sense. As a
result, we have a lower bound on the estimation error (dashed lines in Fig. 3).

3 Results

Fig. 1 shows the grid search result for PCR. Estimation error decreases for
higher internal model dimensionality as more components also explain a higher
amount of variance present in the data. The need for regularization was low for
both surrogate types. The overall estimation error averaged over all patients and
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(a) Range imaging
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(b) Fluoroscopy

Fig. 1. Estimation error using surrogates from range imaging (a) and fluoroscopy (b)
for p = 1, . . . , 6 components and different regularization strengths.
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Fig. 2. Mean estimation error using PCR and KRR with a linear and a Gaussian kernel
for the surface (RI) and the fluoroscopy (FL) surrogate.
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Fig. 3. Surface-based estimation error for each phase of patient 9. The black bars show
the mean magnitude of the ground truth deformation field, while the dashed black lines
indicate the lower bound for the mean error achievable with the respective model.

phases is plotted in Fig. 2. For a more detailed look, Fig. 3 shows the estimation
error of a single patient for each breathing phase for the surface surrogate only,
including the breathing magnitude and the inherent model error for each phase.

In general, all proposed methods are suitable for motion estimation with a
mean estimation error of around 1.0 ± 0.22mm compared to a reference mean
magnitude of 2.48 ± 0.81mm without compensation. Data-based KRR for the
surface surrogate achieved the best average estimation error of 0.84± 0.21mm.

4 Discussion

Contrary to expectation, no significant benefits could be observed from applying
non-linear KRR instead of PCR. This may be due to the low number of 6 phases
available to train the models. Special attention should be given to the way the
internal motion is reconstructed for PCR and KRR, respectively. In the case
of KRR, the new phase is a linear interpolation between all observed phases.
For PCR, the regression result yields the weights for the principal components
from which the internal motion field is reconstructed as a linear combination of
eigenvectors. Thus, PCA introduces an additional generalization step not present
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in data-based KRR. However, from the dashed lines in Fig. 3 it can be seen that
the principal components lack the variation to describe an entire cycle. Because
of our 6 : 3 split for training and evaluation, the internal model only observed
two thirds of a breathing cycle. This is particularly obvious for phases near end-
exhale where the magnitude of breathing is low. Here, both PCR and Gaussian
kernel produce errors higher than the reference magnitude. Only surface-based
linear KRR was able to cope with low-magnitude phases near end-exhale. For
the fluoroscopy surrogate, however, this trend could not be observed.

In summary, all mean estimation errors were close to their respective lower
bound. Thus, the major bottleneck seems to be the reconstruction of the new
phase from the internal model rather than the correlation problem itself.

For future work, an extended evaluation of both PCR and KRR is neces-
sary. Using a patient’s planning CT to train on an entire breathing cycle with
evaluation on a potential follow-up CT will bring evaluation closer to the actual
application case, where the treatment is performed days or even weeks after the
planning images were acquired. This will also give a good indication whether the
additional generalization step of PCA will proof beneficial in comparison to the
phase interpolation of KRR.
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