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Abstract. The reconstruction of protein-protein interaction networks
is nowadays an important challenge in systems biology. Computational
approaches can address this problem by complementing high-throughput
technologies and by helping and guiding biologists in designing new labo-
ratory experiments. The proteins and the interactions between them form
a network, which has been shown to possess several topological proper-
ties. In addition to information about proteins and interactions between
them, knowledge about the topological properties of these networks can
be used to learn accurate models for predicting unknown protein-protein
interactions. This paper presents a principled way, based on Bayesian
inference, for combining network topology information jointly with infor-
mation about proteins and interactions between them. The goal of this
combination is to build accurate models for predicting protein-protein
interactions. We define a random graph model for generating networks
with topology similar to the ones observed in protein-protein interaction
networks. We define a probability model for protein features given the
absence/presence of an interaction and combine this with the random
graph model by using Bayes’ rule, to finally arrive at a model incorpo-
rating both topological and feature information.

Keywords: protein-protein interaction, Bayesian methods, network anal-
ysis

1 Introduction

Knowledge about protein-protein interactions (PPIs) is essential to the under-
standing of the cellular functions and biological processes inside a living cell.
Deciphering the entire network of PPIs of an organism is a very complex task
since these interactions can only be established by costly and tedious laboratory
experiments. Computational techniques for predicting PPIs have become stan-
dard tools to address this problem, complementing their experimental counter-
parts. Accurately predicting which proteins might interact can help in designing
and guiding future laboratory experiments. Therefore, developing computational
methods that can accurately predict PPIs is currently an active research area.



2 Adriana Birlutiu, Tom Heskes

A number of computational approaches for PPI prediction have been developed
over the years. These methods differ in feature information used for PPI predic-
tion, for example genomic data, phylogenetic trees.

A recent trend in computational approaches for predicting PPIs is to frame
this problem in a supervised learning setting. That is, information about proteins
and labels for protein pairs as interacting or not, supervise the estimation of
a function that can predict whether an interaction exists or not between two
proteins. PPI prediction can thus be seen as a pattern recognition problem,
i.e., find patterns in the interacting protein pairs that do not exist in the non-
interacting pairs. This can be further framed as a binary classification problem
which takes as input a set of features for a protein pair and gives as output a
label: interact or non-interact. Binary classification has been studied extensively
in the machine learning community, and many algorithms designed to solve it
have been also applied for predicting PPIs, including Bayesian networks [9],
kernel-based methods [1, 31], logistic regression [14, 27], SVMs [26] decision trees
and random forest based methods [33, 22, 2], metric or kernel learning [31] and [7,
6, 5]. Very recently, other machine learning paradigms, such as, active learning,
multi-task learning, and semi-supervised learning, have also been employed for
improving the prediction of PPIs [18, 24, 11].

In addition to information about proteins and interactions between them,
PPI networks are characterized by several topological properties [10, 15, 4, 21,
28]. Network topology can uncover important biological information that is in-
dependent of other available biological information [25, 13]. One of the most
important topological properties is the existence of a few nodes in the networks,
called hubs, which have many links with the other nodes, while most of the nodes
have just a few links. This characteristic is present in PPI networks and also in
other real-world networks, such as the internet and citation networks. Topology
only has been shown to be able to predict protein functions [17] and PPIs [12]
and to complement sequence information in various biological tasks, like for ex-
ample, homology detection [16]. Summarizing, we can distinguish two types of
information that can be used for predicting PPIs: first, information about pro-
teins and labels for protein pairs as interacting or not, and second, information
about topological properties of PPI networks. These two sources of information
can complement each other and are both valuable for constructing models which
can accurately predict interactions between proteins.

In this contribution, we present a principled way of combining topology and
feature information for constructing models for predicting PPIs. We combine
models that have been previously used for modeling each type of information
separately. We use a random graph generator for addressing the topology infor-
mation and a naive Bayes model for addressing the feature information. We show
that by making a few simplifying assumptions, both topological and protein in-
formation can be incorporated and we show experimentally that this improves
the prediction accuracy in two PPI networks.
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2 Models and Methods

The approach that we use to combine topology and feature information is graph-
ically summarized in Figure 1. It consists of a random graph generator model
and a naive Bayes model which are combined using Bayes’ rule to finally ar-
rive to a logistic regression model (we will ignore for the moment the details
of this figure but come back to it throughout the section). The random graph
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Fig. 1. Graphical representation of the model which combines topology and feature
information. Left box: random graph generator model. Center box: naive Bayes model.
Right box: the result of applying Bayes’ rule, the model which combines topology and
feature information.

generator gives rise to networks which based on topology can all be plausible
hypotheses for the PPI network that we want to reconstruct. Incorporating the
actual data will reduce this set of plausible hypotheses to just a few, out of which
we can pick the one which has the highest likelihood. We implement this in a
Bayesian framework by treating our random graph model as a prior and define
a probability model for the features given the absence/presence of an edge and
combine these two using Bayes’ rule, to finally arrive at a model incorporating
both topological and feature information. The way in which each of these models
is constructed and then combined is detailed in the rest of this section.

2.1 Topological Properties of PPI Networks

We will focus on one essential topological characteristics of PPI networks: the
node degree distribution. The degree of a node represents the number of con-
nections the node has with the other nodes in the network. The probability
distribution of these degrees over the whole network, p(k), is defined as the
fraction of nodes in the network with degree k,

p(k) =
Nk

N
,

where N is the total number of nodes in the network and Nk is the number of
nodes with degree k. The majority of real-world networks have a node degree
distribution that is highly right-skewed, which means that most of the nodes
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have low degrees, while a small number of nodes, known as “hubs”, have high
degrees. The degree of hubs is typically several order of magnitudes larger than
the average degree of a node in the network.

2.2 Random Graph Generator

The first step of our approach is to define a model for generating networks with
the node degree distribution similar to the one of PPI networks (the left-hand
side box of Figure 1). The random graph generator that we define here is inspired
by the general random graph method [3]. The general random graph method
assigns each node with its expected degree and edges are inserted according to
a probability proportional to the product of the degrees of the two endpoints,
i.e., the probability of an edge between two nodes i and j is proportional to the
product of the expected degrees of the nodes i and j. We introduce a latent
variable, di, related to the degree of node i, i.e., di is roughly proportional to
the degree of node i. Let eij be a random variable with two possible values:
eij = 1 if a link is present between nodes i and j, and eij = −1 if there is no
link. In Figure 1, the random variables di and dj are represented by white color
circles because they are unobserved while eij is represented by a gray color circle
because it is observed.

Our model generates links in the network as follows,

p(eij |di, dj) ∝ (
√
didj)

eij = exp

[
eij

1

2
(log di + log dj)

]
, (1)

p(eij = 1|di, dj) ∝
√
didj

p(eij = −1|di, dj) ∝ 1√
didj

p(eij = 1|di, dj) = p(eij=1|di,dj)
p(eij=1|di,dj)+p(eij=−1|di,dj)

=

√
didj√

didj+
1√
didj

=
didj

1+didj
,

p(eij = −1|di, dj) = p(eij=−1|di,dj)
p(eij=1|di,dj)+p(eij=−1|di,dj)

=
1√
didj√

didj+
1√
didj

= 1
1+didj

,

In order to generate networks with a desired topology and for computational
reasons which will become clear later, we consider a log-normal distribution for
di,

p(log di) = N (log di;m0, σ
2
0) , (2)
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where m0 is a scaling parameter, and the parameter σ0 controls the shape of
the distribution. These parameters can be fit such that the networks randomly
generated with the model from Equation (1) have the desired topology. We have
defined di to be roughly proportional to the degree of node i, thus a log-normal
distribution for di results in a distribution for the degree of node i which is
approximately log-normal, which is similar to what is observed in practice.

In summary, the random graph generator for a given topology performs the
following steps.

1. Choose m0 and σ0 the parameters of the log-normal distribution for di.

2. Draw from this distribution a random sample (d1, . . . , dN ) of size N the
number of nodes in the network.

3. Based on this sample construct the network by inserting edges with proba-
bility given in Equation (1).

2.3 Bayesian Framework for Combining Topology and Feature
Information

In order to combine the topology and feature information, we treat the random
graph model as a prior and define a probability model for the protein pairs fea-
tures given the absence/presence of an interaction. We make use of a a naive
Bayes model to express the likelihood of a protein pairs feature given the ab-
sence/presence of an interaction. The likelihood is thus computed as a product
of 1-dimensional Gaussian distributions, each Gaussian distribution expressing
the probability of a feature component fk

ij given the edge variable eij and the
parameters mean mk and variance σ,

p(fij |eij ,m, σ) =
D∏

k=1

N (fk
ij ;mkeij , σ) ∝

D∏
k=1

exp

(
−
(fk

ij − eijmk)
2

2σ2

)
. (3)

We refer to the center box of Figure 1 for a graphical representation of this
model. The naive Bayes model defined above treats the features as independent,
which might not be the case in practice. Despite this simplifying assumption,
the naive Bayes model is known to be a competitive classification method, with
similar performance as the closely related logistic regression algorithm.

The posterior distribution for eij which combines topology and feature infor-
mation is computed using Bayes’ rule as the product between the prior defined
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in Equation (1) and the likelihood terms defined in Equation (3), i.e.,

p(eij |fij , di, dj) ∝ p(eij |di, dj)p(fij |eij , di, dj)

∝ exp

(
eij

1

2
(log di + log dj)−

∑
k(f

k
ij − eijmk)

2

2σ2

)
(4)

∝ exp

(
eij

1

2
(log di + log dj) +

eij
∑

k f
k
ijmk

σ2

)
(5)

∝ exp

(
eij(

D∑
k=1

fk
ijmk

σ2
+

1

2
log di +

1

2
log dj)

)
(6)

where when going from (4) to (5) we discarded the square terms. In the above,
we can ignore any term that does not depend on eij , since it will only affect
the normalization. This includes the term e2ijm

2
k/σ

2, since eij ∈ {−1, 1}. The
normalization term does play a role and, when incorporated, leads to Equa-
tion (8) below. The unknown quantities of our model are mk

σ2 , k = {1, . . . , D}
and log di, i = {1, . . . , N}, and these will be estimated based on the available
training data in a learning procedure that we describe below.

The first step is to adjoin the unknown quantities in a single random variable,
that is

w = [
m1

σ2
, . . . ,

mD

σ2
,
1

2
log d1, . . . ,

1

2
log dN ] , (7)

and the same for the information available, that is protein features and topolog-
ical information

xij = [fij , tij ] ,

where tij is the position vector having 1 on positions i and j and 0 everywhere
else. Then, the normalized probability that there is an interaction between the
proteins i and j from Equation (6) can be rewritten as

p(eij |xij ,w) =
1

1 + exp(−2eijwTxij)
. (8)

Note that in the sum

wTxij =

D∑
k=1

wkfk
ij +

N∑
k=1

wD+ktkij , (9)

the first term on the right-hand side originates from the protein features infor-
mation and the second term from the topological information.

The unknown parameter w is learned in a Bayesian framework which consists
in setting a prior distribution for it, and updating this prior based on observa-
tions. The update is performed using Bayes’ rule given below

p(w|observations) ∝
nobs∏
o=1

p(eoij |xo
ij ,w)p(w) . (10)



Using Topology Information for Protein-Protein Interaction Prediction 7

where nobs is the size of the training data, i.e., the number of known interacting/non-
interacting protein pairs, and p(eoij |xo

ij ,w) is given in Equation (8). p(w) is the
prior and we choose it to be a Gaussian distribution

p(w) = N (w;µ,Σ) .

The hyperparameters µ and Σ of the prior are chosen such that the topological
information is included in the model. This is implemented by making the cor-
respondence with the prior for the latent variables di. Recall from Equation (7)
that wi+D = 1

2 log di , i = 1, . . . , N and from Equation (2) that log di is normally
distributed, consequently wi+D will also be normally distributed, i.e.,

wi+D ∼ N
(
m0

2
,
σ2
0

4

)
, i = 1, . . . , N .

The vectors xij are sparse because their components tij of dimension N contain
only two non-zero elements on positions i and j. This sparsity property can
be exploited for making the computations more efficient. Predictions can be
done for an unknown interaction between a pair of proteins i′, j′ characterized
by the feature vector xi′j′ . These predictions can be done either averaging the
posterior over w in Equation (8) or by using a point estimate of this posterior,
let w∗ be the mean of p(w|observations), and computing p(ei′j′ |xi′j′ ,w

∗) using
Equation (8).

We refer back to the graphical sketch of our model in Figure 1 at the begin-
ning of this section. The box on the left-hand side, corresponds to the random
graph generator model. The observation eij , which expresses the presence or
absence of an edge between nodes i and j, depends on the latent variables di
and dj which are related to the degrees of nodes i and j. The random graph gen-
erator model incorporates feature information through the naive Bayes model
with unknown parameters m and σ, represented in the center box. The combi-
nation of the two models is obtained using Bayes’ rule. The result is shown in
the right-hand side box. The unknown quantities di, dj , and m, σ are combined
in the node w which is unobserved, and fij together with tij which is implicitly
expressed by indices i and j form the observed quantity xij .

In the experimental evaluation from Section 3 we will compare four models.
All the models are based on Equation (10) with a Gaussian prior and likelihood
terms of the form given in Equation (8) and they vary in the way of computing
the dot product from Equation (9) and on the parameters of the Gaussian prior.

1. Model 1 (Features+Topology): is the model we propose in this work. It makes
use of the following dot product

wTxij =
D∑

k=1

wkfk
ij +

N∑
k=1

wD+ktkij , (11)

and a Gaussian prior with mean µ1:D = 0, µD+1:N = −1.5 and covariance
matrix equal to the identity matrix.
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2. Model 2 (Features only): uses only information about proteins, and the dot
product is computed as

wTxij =

D∑
k=1

wkfk
ij + wD+1 . (12)

The second term on the right-hand side of Equation (12) is a bias term to
address the unbalancedness of the data. This bias term also corresponds to
the second term on the right-hand side of Equation (11); for an edge eij the
contributions in Equation (11) are wD+i +wD+j while in Equation (12) we
constraint wD+i = 1

2w
D+1, ∀i = 1, . . . , N . This observation also motivates

the choice of the prior for this model: mean µ1:D = 0 and µD+1 = −3 and
covariance equal to the identity matrix.

3. Model 3 (Topology only): uses only topology information and the dot product
is computed as

wTxij =

N∑
k=1

wktkij .

The Gaussian prior is of dimension N with mean equal to the vector µ1:N =
−1.5 and covariance matrix equal to the identity matrix. The choice for
µ1:N = −1.5 corresponds to the log-normal distribution with m0 = −3, thus
to a network with a node degree distribution similar to the one observed in
PPI networks.

4. Model 4 (Topology-enriched features): uses the information about proteins
and about topology in the following form

wTxij =
D∑

k=1

wkfk
ij + wD+1 log(d̂i + 1) + wD+2 log(d̂j + 1) ,

where d̂i and d̂j are the estimated degrees of nodes i and j computed on the
training data. Basically, the features fij for a pair of proteins i and j are
being extended by adding two new columns corresponding to the degrees of
nodes i and j computed on the training set. For computational reasons we
considered the logarithms of node degrees to which we added 1. The idea
behind this model is similar to the one used in [29, 24], i.e., the topological
features are added to protein features resulting in an enriched set of features.
The features are being standardized and the parameters of the Gaussian prior
are set to µ1:D+2 = 0 and covariance equal to the identity matrix.

3 Results

In this section we discuss the results of the experimental evaluation of the frame-
work proposed here. We compare the performance obtained using information
about proteins only, with the performance obtained using topology information
only and with the performance obtained with the combination of the two.
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3.1 Data Sets

We used two data sets. Details for each of them are given below.

Yeast Data This data set was borrowed from [5] and it consists of the high
confidence physical interactions between proteins highlighted in [30]. The PPI
network has 984 nodes (proteins) connected by 2438 links (interactions). We con-
sider all the protein pairs not present in the 2438 interactions as non-interacting.
The yeast PPI graph is very sparse, as a result the data is highly unbalanced,
with less than 1% from the total examples belonging to the positive class. Each
protein has associated a vector of dimension 157 representing gene expression
values in various experiments. We constructed the features for protein pairs by
summing the individual protein features.

Human Data This data set was created and made available by [23] and consists
of protein pairs with an associated label: interact or non-interact. Each pair of
proteins is characterized by a 27-dimensional feature vector. The features were
constructed based on Gene Ontology (GO) cell component (1), GO molecular
function (1), GO biological process (1), co-occurrence in tissue (1), gene expres-
sion (16), sequence similarity (1), homology based (5) and domain interaction
(1), where the numbers in brackets correspond to the number of elements con-
tributed by the feature type to the feature vector. Unlike positive interactions,
non-interacting pairs are not experimentally reported. Thus, a common strategy
is to consider as non-interacting pairs a randomly drawn fraction from the total
set of potential protein pairs excluding the pairs known to interact. The resulting
data set has 14,608 interacting pairs and 432,197 non-interacting pairs. The PPI
graph consists of 24, 380 nodes connected by 14, 608 edges. As in the case of the
yeast data set, the PPI graph of the human data is very sparse, the interacting
pairs represent less then 1% from the possible links in the graph.

Both data sets are highly unbalanced, with 1% and 5% positive pairs for yeast
data and human data, respectively. There are classification methods that were
designed to address the unbalancedness of data [19]. Specifically, for protein
interactions, there are some studies [32, 20] that investigate how to construct
non-interacting protein pairs (negative samples).

3.2 Experimental Setup

The experimental setup considered a part of the data for training and the rest for
testing. The training data was used to learn the models and the testing data was
used to evaluate how good these models can predict PPIs. We randomly sampled
a training set containing 1%, 5%, 10% and 20% protein pairs and their labels
as interacting or not from the yeast and human data set. The PPI prediction
problem was thus transformed in a binary classification problem The training
features were standardized to have mean zero and standard deviation of one.
This data sample was used to train the classification model (i.e., learn the weight
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parameter of the logistic regression). The remaining protein pairs were used for
testing the performance. These steps were repeated 10 times and average results
are reported (mean ± standard deviation).

3.3 Evaluation Measure

Area under the receiver operating characteristic curve (AUC) was used as a
measure for evaluating the performance. The receiver operator characteristic
(ROC) curve plots the true positive rate against the false positive rate for dif-
ferent thresholds. The AUC statistic can be interpreted as the probability that
a randomly chosen missing edge (a true positive) is given a higher score by the
method than a randomly chosen pair of proteins without an interaction (a true
negative).

3.4 Performance

Table 1 shows the comparison of the performance of the four models discussed.
Model 1 represents the Bayesian framework for combining feature and topology
information, Model 2 uses only protein information, Model 3 uses only topology
information and Model 4 uses protein features which are enriched with node
degrees. The comparison was performed for the yeast data (the four upper rows
in Table 1) and human data sets (the four lower rows in Table 1). The protocol
described in Section 3.2 was used and the averaged AUC scores with their stan-
dard deviations are reported. The statistical significance between Model 1 and
Model 2 was assessed by using a Mann-Whitney U-test [8] on the AUC values
obtained from the two models for 10 random splits of the data into training and
testing. A 5% significance level has been considered. The ∗ indicates that the
results obtained for Model 1 are significantly better than the results obtained
for Model 2.

The results show that the combination of the two sources of information,
protein features and topology, gives a better performance than using only one
type of information. In particular Model 1 (Features+Topology) performs sig-
nificantly better than Model 2 (Features only) in most of the cases. Model 1
and Model 4 have a similar performance for human data, and Model 1 performs
better than Model 4 for yeast data. An explanation for this is related to how the
protein features were constructed in the two cases; for yeast data the features for
a protein pair resulted from summing the feature vectors corresponding to the
two proteins, while for human data the protein features are more related to the
protein pair than to individual proteins. Model 3 (Topology only) uses only the
information related to the topology, in particular the property of hub-proteins
to interact with many other proteins. Note that you can have the pair of protein
A and protein B in training set and the pair of protein A and protein C in the
test set, and in this way the algorithm learns which proteins are hubs (and other
topological information) and makes predictions based on topology.

The results vary also as a function of the size of the training data. For a small
training set the network is not well defined, and we can see that in this case the
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Table 1. AUC values (mean ± standard deviation) for the four models:
Model 1 represents the Bayesian framework for combining feature and topol-
ogy information, Model 2 uses only protein information, Model 3 uses only
topology information, Mode 4 uses protein features which are enriched by
node degrees. The ∗ indicates that the results obtained for Model 1 are
significantly better than the results obtained for Model 2. The four upper
rows correspond to the yeast data set while the four lower rows correspond
to the human data set.

% Train Model 1 Model 2 Model 3 Model 4
data Features+ Features Topology Topology

Topology only only features

1% 0.639 ± 0.014 0.639 ± 0.018 0.577 ± 0.016 0.582 ± 0.022
5% 0.708 ± 0.006 0.697 ± 0.009 0.688 ± 0.010 0.689 ± 0.009
10% 0.731 ± 0.005∗ 0.712 ± 0.005 0.720 ± 0.006 0.717 ± 0.007
20% 0.746 ± 0.009∗ 0.719 ± 0.006 0.742 ± 0.009 0.737 ± 0.010

1% 0.863 ± 0.006∗ 0.851 ± 0.006 0.608 ± 0.014 0.822 ± 0.012
5% 0.909 ± 0.002∗ 0.859 ± 0.001 0.793 ± 0.007 0.899 ± 0.003
10% 0.931 ± 0.002∗ 0.861 ± 0.001 0.864 ± 0.005 0.931 ± 0.002
20% 0.952 ± 0.002∗ 0.862 ± 0.001 0.917 ± 0.003 0.954 ± 0.002

improvement is smaller, but, as we increase the training set, meaning that the
knowledge about the network topology increases, the performance obtained by
adding the topology information improves more.

4 Conclusion

We introduced a framework for predicting PPI by considering the network struc-
ture information. This is a Bayesian framework consisting of a prior distribution
over the network topology and likelihood terms for observations about links in
the network. In the Bayesian framework in general, and in our case when trying
to add topological information, the computational complexity is an issue. In the
framework presented here, we managed to find some simplifying assumptions
which reduce the computational complexity and at the same time yield a good
performance.
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