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Abstract

We present an EM-algorithm for the problem of learning preferences with Gaus-

sian processes in the context of multi-task learning. We validate our approach

on an audiological data set and show that predictive results for sound quality

perception of hearing-impaired subjects, in the context of pairwise comparison

experiments, can be improved using a hierarchical model.
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1. Introduction

There has been a wide interest in learning the preferences of people within

artificial intelligence research in the last years [19]. Preference learning is a

crucial aspect in modern applications such as decision support systems [14],

recommender systems [9, 7], and personalized devices [17, 31].

It is important to optimize the preference learning process in terms of

cost/time invested. Many machine learning techniques especially designed for

optimizing the learning process, such as multi-task learning, have been little

explored in the context of preference learning. Multi-task learning is especially

suited to the situation in which data for a specific single scenario is scarce, but

data is already available from similar scenarios. An example is evaluating sound

quality with hearing aids: we have gathered sound evaluations for quite some
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subjects, information that we would like to exploit when learning a model for a

new subject.

The aim of this article is to apply multi-task learning to the context of

preference learning. We consider the problem of learning subject preferences

not as an individual problem, but in the context of learning from similar tasks

with multiple subjects. In this way, the model of different subjects can regularize

and influence each other. We demonstrate the usefulness of our model on an

audiological data set. We show that the process of learning preferences can be

significantly improved by using a hierarchical non-parametric model based on

Gaussian processes.

1.1. Related Work

In this section we review some studies from preference learning and multi-

task learning related to the work presented in this paper.

1.1.1. Preference Learning

Preference learning has recently received much attention in the machine

learning community [23]. In the literature, two approaches are mainly used

for representing preference information: i) binary preference predicates and ii)

scoring methods (utility functions) [22, 23]. For example, the first approach

solves a ranking problem as an augmented binary classification problem [30, 29,

22, 1]; the second approach uses regression to map instances to target valuations

for direct ranking [13, 18, 16]. We focus on the second approach by modeling

utility functions using Gaussian processes (GPs). By formulating the preference

elicitation process as a probabilistic Bayesian learning problem, one can deal

with inconsistencies in subject responses as well as learn biases the subject

may have. GPs have been around quite some time [33, 8], nevertheless, their

applications have increased considerably over the years and is still the focus of

much research [44]. Only recently, GP models have been applied to the problem

of eliciting people’s preferences [16, 12] or eliciting probability distributions from

expert’s opinions [27, 28, 41].
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1.1.2. Multi-Task Learning

The basic idea in multi-task learning is that models learned on different

scenarios have parts in common. In a Bayesian framework this often boils

down to the sharing of a hierarchical prior [3, 20, 49]. A typical application

scenario for multi-task learning are recommender systems [7, 37], which combine

content information (e.g., features of items) with collaborative information (data

from other subjects) [15, 50]. Multi-task learning with Gaussian processes has

recently received attention [46, 51, 10, 43]. The contribution of this paper is

the extension of the multi-task Gaussian processes for regression introduced by

[46, 51] to learning from qualitative preference statements.

Preliminary results were reported by us in [5].

1.2. Structure of the Article

Section 2 introduces the probabilistic choice model, which represents how

subjects choose among a finite set of alternatives. The model assumes a latent

utility function that represents subjects’ preferences. Section 3 presents three

representations for utility functions: i) A parametric representation in which

multi-task learning can be easily implemented; ii) A non-parametric Gaussian

process representation; iii) A dual representation based on Gaussian processes.

Section 4 describes Bayesian learning of the individual utility function. Section 5

presents multi-task preference learning. We introduce a hierarchical extension

to the Bayesian framework and use the Expectation Maximization algorithm

for learning a hierarchical prior. Section 6 reports experimental results with

the hierarchical model for learning subject preferences in an audiological con-

text. Section 7 presents our conclusions and directions for future work. The

appendices give details about the algorithms developed in this paper.

1.3. Notation

Boldface notation is used for vectors and matrices and normal fonts for the

components of vectors and matrices or scalars. Superscript is used to distinguish

between different vectors or matrices and subscript to address their components.
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The notation N (θ|µ,Σ) is used for a multivariate Gaussian with mean µ and

variance Σ. The transpose of a matrix M is denoted by MT . The zero vector

and identity matrix are denoted by 0 and I, respectively.

2. Probabilistic Choice Models

Let X = {x1, . . . ,xN} be a set of N distinct inputs. Typically, every input

is represented by a d-dimensional vector of features, xi ∈ Rd. We consider M

subjects. Let Dj be a set of N j observed preference comparisons over instances

in X, corresponding to subject j, j = 1, . . . ,M ,

Dj = {(xi1, . . . ,xiP , yi)|1 ≤ i ≤ N j ,xi· ∈ X, yi ∈ {1, . . . , P}} , (1)

where yi = p means that alternative xip is preferred from the P inputs presented

to a subject. We consider a version of this setup in which the preference data

of each subject uses the same set of inputs X, which is known beforehand and

remains fixed. This is the standard setup in marketing applications of preference

modeling where the same choice panel questions are given to many individual

consumers, each subject provides his/her own preferences, and we assume that

there is some similarity among the preferences of the subjects in the general

sense that people have some common preferences.

The preference observations from the comparisons described above can be

modeled using probabilistic choice models. The main idea behind probabilistic

choice models is to assume a latent utility function value U j(xi) associated with

each input xi which captures the preference of subject j for xi. In the ideal

case, the latent function values are consistent with the preference observations,

which in probabilistic terms can be written as P (yi = p|xi1, . . . ,xiK , U j) = 1 if

U j(xip) ≥ U j(xil), l 6= p. In practice, however, subjects are often inconsistent

in their responses. A very inconsistent subject will have a high uncertainty as-

sociated with the utility function; this uncertainty is directly taken into account

in the probabilistic framework. A standard modeling assumption [11, 32, 26] is

that the subject’s decision in such a forced-choice comparison follows a multi-
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nomial logistic model, which is defined as

P (yi = p|xi1, . . . ,xiP , U j) =
exp

[
U j(xip)

]∑P
l=1 exp [U j(xil)]

. (2)

For pairwise comparisons, i.e., the subject choosing between one of two pre-

sented alternatives, Equation (2) is known as the Bradley-Terry model [11].

The Bradley-Terry model using a dichotomous response scale {worse, better}

can be extended to a polytomous response scale, such as for instance {much

worse, worse, equal, better, much better}. The polytomous response scale re-

sults in more information from a comparison than a dichotomous response scale

and can be modeled using a polytomous Rasch model [52]. The optimal re-

sponse scale, however, depends on the application domain. The polytomous

scale cannot be applied in some domains. For example, in the audiological do-

main that we consider in Section 6 it is standard practice to use forced-choice

pairwise comparisons using a response scale with two or three items since more

alternatives or a larger response scale is tiresome for the subject.

An alternative to the model from Equation (2) is the multinomial probit

model, which has been used to learn from pairwise comparisons in [16, 12]. The

two models, logistic and probit, give similar predictions, however, for P ≥ 3

the probit model is more difficult to handle [34]. For this study we use the

multinomial logistic model.

In this probabilistic framework, learning the preferences of a subject j re-

duces to learning the corresponding utility function U j . The goal of this paper

is to learn the utility functions corresponding to different subjects, jointly, by

sharing information between them.

3. Modeling the Utility Function

This section discusses three representations for the utility function:

1. A parametric representation in which multi-task learning is naturally ob-

tained by introducing a joint prior over parameters (Section 3.1).

5



2. A non-parametric representation based on Gaussian processes (Sec-

tion 3.2). Multi-task learning is in this case arguably more complicated

since here one has to consider a joint prior over functions.

3. A dual representation of the utility function based on Gaussian processes

(Section 3.3). This dual representation has a parametric form on which

multi-task learning can be easily implemented by employing the theory of

hierarchical modeling for parametric models. We show in Appendix A that

this representation preserves properties of the non-parametric Gaussian

process representation.

For simplicity of notation we omit, in this section and the next one, the super-

script j when referring to the individual utility function.

3.1. Parametric Models for Utility Functions

The utility function in the parametric representation is a fixed model,

U(x,θ), in which the vector of parameters θ captures the preferences of the

subject. To learn a subject’s preferences, we need to learn the parameter θ.

Multi-task learning is implemented by introducing a prior distribution over θ.

This prior is learned from the data available from all subjects. Since the model

U(x,θ) is predefined, this parametric representation is rather limited.

3.2. Non-Parametric Models for Utility Functions

The main advantage of using the Gaussian process formalism in our frame-

work is that it models the utility function in a non-parametric way, allowing

more flexibility than with a fixed parametric model. Furthermore, the compu-

tational complexity of GPs is independent of the dimension of the data points

but dependent on the number of them; this is an advantage when having few

data points but of high dimension.

A Gaussian process (GP) [44] is a collection of random variables, any finite

number of which have a joint Gaussian distribution. In our case the random

variables are the output values of the utility function and we identify the utility

function U with a finite vector U . Following the approach of [16] for learning
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preferences with GPs, we define a GP prior over the utility function, i.e., given

X = {x1, . . . ,xN}, the joint distribution over the utility function values is a

multivariate Gaussian distribution,

U = {U(x1), . . . , U(xN )} ∼ N (m,K) . (3)

The covariance matrix K is generated by a kernel function κ, Kij = κ(xi,xj).

Possible choices for κ are, for example, the linear kernel κLinear or the Gaussian

kernel κGauss defined below,

κLinear(xi,xj) =
d∑
l=1

xily
j
l ,

κGauss(xi,xj) = exp

(
−s

2

d∑
l=1

(xil − x
j
l )

2

)
.

where s is a length-scale parameter. The choice of the kernel function depends

on our assumptions about properties of the “true” utility function, where “true”

refers to how the people evaluate utilities in reality. In some domains, a linear

kernel can be good enough; in other domains when a more complex form of the

utility function is needed, a Gaussian kernel is more suited.

A Gaussian process is in fact equivalent to a Bayesian interpretation of linear

regression (see [44]). Let

U(x) = φ(x)Tα =
∑
i

αiφi(x) ,

be a linear combination of (a possibly infinite number of) basis functions φi(·)

where α is a weight vector. If the weight vector α is drawn from a Gaussian dis-

tribution, this induces a probability distribution over functions U(·) = φ(·)Tα.

This distribution is a Gaussian process. From this analogy it follows that a

linear kernel is essentially equivalent to a linear parametric model.

A graphical representation of preference learning using the GP representa-

tion of the utility function, for the case of pairwise comparisons, is given on the

left-hand side of Figure 1. What is inside the plate corresponds to the utility

model of one subject. The response y1 given by a subject to the comparison
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{x1,x2} depends on the values U(x1), U(x2) of the subjects’ utility function.

The goal is to learn the latent utility function, in order to predict the outcomes

of the unobserved comparisons (y2) based on the observed ones (y1 and y3). The

utility function values corresponding to a given subject, U(x1), U(x2), U(x3),

are correlated in the GP formalism since they depend on each other through

the kernel (illustrated by the solid bar between them). Furthermore, the utility

models, for each subject, depend on the same prior estimates m and K.

µ,Σ

m, K α

U(x1) U(x2) U(x3) U(x1) U(x2) U(x3)

y1 y2 y3 y1 y2 y3

M M

Figure 1: Preference learning based on two representations of the utility function. What

is inside the plate corresponds to the utility model of one subject. Left: non-parametric

Gaussian process (cf. Section 3.2). Right: parametric Gaussian process (cf. Section 3.3).

The observation y1 of the comparison {x1, x2} depends on the values U(x1), U(x2) of the

subjects’ utility function. The goal is to learn the latent utility function U in order to predict

the outcomes of the unseen comparisons (y2) based on the observed ones (y1 and y3).

3.3. Dual Formulation of the GP

Inspired by the representer theorem [45] — that links the GP to a semi-

parametric model — we use a dual representation for the utility function. The
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dual representation has a semi-parametric form on which multi-task learning

can be easily implemented by employing the theory of hierarchical modeling for

parametric models. In the dual representation, the utility function U(x), x ∈ X

is defined as follows

U(x) =
N∑
i=1

αiκ(x,xi) , (4)

where xi ∈ X, κ is the kernel function, and α ∼ N (µ,Σ). Equation (4)

expresses the utility function as a linear combination of basis functions defined

by a kernel centered on the data points. The vector of parameters α with

dimension N — the number of inputs — captures the information collected

from the data set related to a subject. Even though α is a parameter, it does

not induce a fixed form for the utility function — as the representation of the

utility function in Equation (4) is data dependent. The parameter α can give

further insights about the importance of each data point and can be used to

obtain sparseness and detect outliers [25]. The representation of the utility

function from Equation (4) is similar to the Relevance Vector Machine (RVM)

[48]; the vector of parameters α can give information about which data points

(if any) are relevant / prototypes. Furthermore, based on α we can decide which

data points to query for labeling next, such as to obtain maximum information

in an experimental design / active learning approach. When the number of data

points is large, sparsity may be desired for the parameter α. In that case, a

Laplacian, rather than a Gaussian prior may be more suited.

A graphical representation of preference learning using the dual representa-

tion of the GP, for the case of pairwise comparisons, is given on the right-hand

side of Figure 1. Analogous to the left-hand side of the figure, what is inside

the plate corresponds to the utility model of one subject. The difference with

the left-hand side is that the utility function of one subject is determined by

the parameter α. Note that in this representation the utility function values

U(x1), . . . , U(xN ) are conditionally independent given α. Furthermore, the pa-

rameters corresponding to the utility models of different subjects depend on the

hierarchical prior estimates µ and Σ.
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The correspondence between the dual (this section) and primal formulation

(Section 3.2) is discussed in Appendix A.

4. Learning the Utility Function

In order to learn a subject’s preferences, we treat the vector of parameters

α as a random variable. After performing an experiment and observing its

outcome, the posterior distribution over α is computed using Bayes’ rule,

P (α|X,O,µ,Σ) ∝ P (α)P (O|X,α)

= P (α)
N∏
i=1

P (yi|xi1, . . . ,xiP ,α) ,

with inputs X = {(xi1, . . . ,xiP ), i = 1, . . . , N}, preference observations

O = {yi, i = 1, . . . , N}, and likelihood terms of the form given in Equation (2).

We make the common assumption of a Gaussian prior distribution. The

entire posterior distribution, not only a point estimate, of α is needed in the

multi-task learning context presented in the next section. The exact posterior

distribution is intractable, therefore, we approximate it with a Gaussian. The

Gaussian approximation is a good approximation of the posterior because with

few data points the posterior is close to a Gaussian due to the prior, and with

many data points the posterior approaches again a Gaussian as a consequence of

the central limit theorem [6]. Two types of approaches exist for approximating

the posterior distribution i) deterministic methods for approximate inference

(e.g., Laplace’s method [36], Expectation Propagation [39]); ii) methods based

on sampling. Since the sampling methods are computationally expensive, and

the deterministic methods are known to be very accurate for these types of

models [26] we focus on deterministic methods. In Appendix B we present two

methods for approximate inference in the probabilistic choice models described

in Section 2.
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5. Multi-Task Preference Learning

In this section we consider learning the utility function in a multi-task set-

ting. Consider M tasks, each task corresponding to one subject. Let Dj be the

data set of subject j, of the form given in Equation (1). The goal is to learn

the latent utility functions U j , j = 1, . . . ,M , jointly, sharing information be-

tween tasks. We implement the multi-task learning using Bayesian hierarchical

modeling. We derive a method for gathering data from previous subjects into

a single distribution that is used as a prior distribution for a new subject.

The utility function U j is parametrized in terms of αj . The inference prob-

lems for all the tasks are coupled by having the same prior over the parameters

αj , i.e., we set P (αj) = N (αj |µ,Σ) a Gaussian prior with the same µ and Σ

for all subjects. The posterior distribution for each task is assumed to be (close

to) a Gaussian with mean µj and variance Σj . A penalized version of the max-

imum likelihood values for the prior mean µ and the prior variance Σ, can be

obtained by specifying a hyper prior distribution over µ and Σ, P (µ,Σ). We

assume a normal-inverse-Wishart distribution as the hyper prior since it is the

conjugate prior for the multivariate distribution,

P (µ,Σ) = N (µ|µ0,
1
π

Σ) IW(Σ|τ,Σ0) .

The normal-inverse-Wishart distribution is specified by means of the scale ma-

trix Σ0 with precision τ , and mean µ0 with precision π. We assume that µ0 = 0

and Σ0 = I.

EM Algorithm for Learning the Hierarchical Prior

The hierarchical prior is obtained by maximizing the penalized loglikelihood

of all data. This optimization is performed by applying the Expectation Maxi-

mization algorithm [24, 51], which reduces to the iteration (until convergence)

of the following two steps.

E-step: For each subject j, estimate the sufficient statistics (mean µj and

covariance matrix Σj) of the posterior distribution over αj , given the
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current estimates, µ(t) and Σ(t), of the hierarchical prior. The E-step is

performed using one of the inference techniques mentioned in Appendix B.

M-step: Re-estimate the parameters of the hierarchical prior:

µ(t+1) =
1
M

M∑
j=1

µj ,

Σ(t+1) =
1

τ +M

[
πµ(t+1)µ(t+1)T +

1
M

M∑
j=1

Σj+

I +
M∑
j=1

(µj − µ(t+1))(µj − µ(t+1))T
]
, (5)

where µj and Σj are the posterior mean and variance for subject j com-

puted based on the previous prior mean µ(t) and variance Σ(t). The up-

date equation for the variance relates to the variance of a mixture model:

the last term on the right-hand side of Equation (5) computes the vari-

ance between the individual means and the second term the average of

the individual variances in the mixture components.

In each E-step, the distribution over αj is approximated with a multivariate

Gaussian. Therefore, in our hierarchical framework each utility function U j

can still be interpreted as an (approximate) Gaussian process (cf. the equiva-

lence stated in Appendix A). The derivation of the EM algorithm is given in

Appendix C.

6. Experimental Evaluation

We validated our approach for hierarchical preference learning on an audi-

ological data set. The audiological data set consists of evaluations of sound

quality from 14 normal-hearing and 18 hearing-impaired subjects, which we

considered as two separate data sets. Each person was subjected to 576 pair-

wise comparison listening experiments of the form (x1,x2, y), where x1 and x2

represent two output sounds obtained by processing the same input sound us-

ing two different parameter settings of the hearing aid, and y = {1, 2} denotes
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which of the two alternatives was preferred by the subject. The preference data

collected in the audiological experiment is related to the overall evaluation of

the quality of the sound stimulus presented. Research in audiology [2] shows

that intelligibility is an important factor in the perceptual judgment of sound

quality by subjects. In order to increase intelligibility, the sound stimulus is

being processed, e.g., by reducing noise or increasing the volume in some fre-

quency bands. Sound processing adds, however, different kinds of distortions to

the output signal listened to by a subject, thus degrading the comfort and as a

result the overall sound quality. The way in which people perceive the quality

of the processed sound stimulus varies, even for normal-hearing subjects. A

detailed description of the data set can be found in [2].

The goal of the validation was to check whether the preferences of a new

subject can be learned more accurately by using the available preferences from

other subjects. To answer this question we compared the hierarchical model

with i) a pooling method and ii) a method which assumes no prior information.

In each simulation one subject was left-out (the test subject). The data set

for the test subject, was split into training (used for learning preferences) and

testing (the accuracy of the predictions on the test data was used as a measure

of how much we learned about subject’s preferences). In the hierarchical model

each subject was characterized by a utility function which describes his/her

preferences. The utility function for the test subject was parametrized by the

vector α as discussed in Section 3. The EM algorithm described in the previous

section was used to gather data from the rest of the subjects in a probability

distribution over α, which was used as the starting prior. The values of the

hyper-parameters of the hierarchical prior were set to π = 0 and τ = 1. Below

we describe the comparison of the pooling method and non-informative prior

method with the hierarchical model in more detail.

The pooling method pools all data together and a single model is learned

based on all but the test subject, after which data from the test subject is added

one by one. A linear kernel was used. For each test subject, we averaged the

results using 20 random splits of the data into training (20 data points) and

13



testing (the remaining data points). Furthermore, the results were averaged

within each group of normal-hearing and hearing-impaired subjects. The plots

in Figure 2 compare the accuracy obtained using the hierarchical model versus

the pooling method. The pooling method works good for normal-hearing sub-

jects but, as we expected, performs worse than the hierarchical model for the

hearing-impaired subjects. There is no change in the accuracy of the pooling

method as a function of the number of experiments / data points because the

few extra data points of the test subject, compared with all the data points from

the other subjects, do not really affect the estimate. Note that the variance is

higher within the hearing-impaired group due to variations in the audiological

conditions.
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Figure 2: Accuracy for the hierarchical model vs. pooling method. The bars indicate the

variance of the accuracy between the subjects, within the two groups of normal-hearing and

hearing-impaired subjects.

The non-informative prior method uses a flat prior which assumes no in-

formation about the test subject’s preferences. For this comparison we only

considered the hearing-impaired subjects as the pooling method shows that the

normal-hearing subjects are very similar. For each test subject, we averaged

the results using 10 random splits of the data into training (450 data points)

and testing (the remaining data points). Furthermore, the results were averaged
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over all subjects. In Figure 3 left panel we give the percentage of predictions

0 100 200 300 400
50

55

60

65

70

75

80

%
 H

ie
ra

rc
hi

ca
l m

od
el

 is
 b

et
te

r

# experiments
0 100 200 300 400

0

5

10

15

# experiments

%
 D

iff
er

en
ce

 b
et

w
ee

n 
m

od
el

s

 

 
κ

Linear

κ
Gauss

Figure 3: Left: percentage of the number of predictions on which the two models (with the

hierarchical and with a flat prior) disagree. Right: percentage of the number of times the

prediction accuracy using the hierarchical prior is better than the prediction accuracy with

a flat prior. We only considered the hearing-impaired subjects as the pooling method shows

that the normal-hearing subjects are very similar.

on which the two models (the one with the hierarchical and the one with the

flat prior) disagree, with respect to the total number of predictions made; the

dashed line refers to a linear kernel, the dotted line to a Gaussian kernel. For

the Gaussian kernel we set s = 1; the results are rather insensitive to the specific

choice for this parameter since the high number of data points dominates the

model; this is not always the case, and then an appropriate value for s has to be

found. As it can be seen from the plots, the difference between the two models

decreases as a function of the number of observations. In Figure 3 right panel

we show the percentage of correct predictions made using the hierarchical prior,

with respect to the number of predictions on which the two models disagree. It

can be seen from the plots that especially in the beginning of the learning pro-

cess, with few observations, the model with a prior learned from the community

of other subjects significantly outperforms the model with a flat prior.

Furthermore, in order to determine which of the kernels is more suited for

this data set, we compared the hierarchical model with a Gaussian kernel and
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with a linear kernel. We used the same setup as in the previous comparison.

In Figure 4 left panel we give the percentage of predictions on which the two

kernels disagree, with respect to the total number of predictions made. In

Figure 4 right panel we show the percentage of correct predictions made using

the Gaussian kernel, with respect to the number of predictions on which the

two kernels disagree. The Gaussian kernel appears to be better overall than the

linear kernel for this data set.
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Figure 4: Left: percentage of the number of predictions on which the two hierarchical models

(with the Gaussian and with a linear kernel) disagree. Right: percentage of the number of

times the prediction accuracy using the Gaussian kernel is better than the prediction accuracy

with a linear kernel. We only considered the hearing-impaired group of subjects. The dashed

line is drawn for reference of equal performance between the two kernels.

7. Conclusions and Future Work

We have introduced a hierarchical modeling approach for learning related

functions of multiple subjects performing similar tasks using Gaussian processes.

A hierarchical prior was used from which model parameters were sampled in

order to enforce a similar structure for the utility function of each individual

subject.

We are interested in further improvements of the model. Particularly, we

plan to investigate how to select, in an active way, the most informative ex-
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periments in order to learn subjects’ preferences. Furthermore, it might be

interesting to automatically cluster, either beforehand or as an integral part of

the algorithm, the subjects into groups with similar behavior. For the audiolog-

ical data set used in this study, we manually clustered the data into two sets of

normal-hearing and hearing-impaired subjects since the plots of the maximum-

likelihood estimates of the subjects’ parameters did not show the need for further

subclustering. For other data sets, one could consider replacing the Gaussian

prior with a Dirichlet prior [49]. This would lead to automatically clustering of

the subjects and would enable the algorithm to identify relatedness among the

subjects. In this way the hierarchical prior is learned using those subjects that

are more related to the test subject. Another alternative for future research is

to compare our approach to other multi-task learning approaches, for example,

[38] and [10].

A. Equivalence of the GP Representations

We analyze the relation between the two Gaussian process representations of

the utility function given in Sections 3.2 and 3.3. We show below that the two

representations induce the same Gaussian distribution over the utility function

for any subset Z ⊆ X.

Let UZ be the vector U restricted to the index set Z, and let α ∼ N (µ,Σ)

be a Gaussian distributed variable. From Equation (4) follows that UZ is a

linear combination of Gaussian distributed variables and has therefore a mul-

tivariate Gaussian distribution. The distribution over α induces the following

distribution over UZ

UZ ∼ N (K(Z,X)µ, K(Z,X)ΣK(Z,X)T ) . (6)

The two Gaussian distributions from Equations (6) and (3) restricted to Z ⊆ X

are the same when

K(Z,X)µ = mZ ,

K(Z,X)ΣK(Z,X)T = K(Z,Z) ,
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with mZ the vector m restricted to the index set Z. This leads to the following

result.

Theorem A.1 (Primal-Dual Equivalence). The utility model U(x) =∑N
i=1 αiκ(x,xi) with α ∼ N (µ,Σ) and x ∈ X = {x1, . . . ,xN} is equivalent to

the standard GP formulation U ∼ N (m,K) when

Kµ = m , (7)

Σ = K+ , (8)

with K+ the pseudo-inverse of K.

Proof: Equation (8) follows directly from the definition of the pseudo-inverse,

KK+K = K .

If K is invertible, for any m there exists a µ that satisfies Equation (7). This

property does not necessarily hold if K is not invertible. �

The equivalence between the primal and the dual representations holds when

we apply the model in a transductive setting, i.e., only to inputs x ∈ X. The

two representations are not equivalent anymore when we apply the model to a

new test point x∗ 6∈ X.

B. Methods for Approximate Inference

We present two methods for approximate inference suited to the probabilistic

choice models introduced in Section 2.

Laplace’s method

In the Laplace approximation [36], the posterior distribution is approximated

by a Gaussian with mean equal to the maximum a posteriori solution

θ∗ ≡ argmax
θ

L(θ) ,
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where

L(θ) =
N∑
i=1

logP (yi|xi1, . . . ,xiP ,θ)− 1
2

(θ − µ)TΣ−1(θ − µ) ,

and variance equal to the inverse of the Hessian, the second derivative of L(θ).

ADF and EP

Assumed Density Filtering and Expectation Propagation [42, 39] are ap-

proximation techniques in which the terms of the likelihood corresponding to

the observed data are added in a sequential way. At each step the result of the

inclusion is projected back into the assumed density (we choose for the assumed

density a Gaussian). The projection is done by minimizing the Kullback-Leibler

divergence between the real posterior and the approximate density. For assumed

densities in the exponential family this reduces to moment matching, i.e., the

new approximate posterior is the Gaussian which has the same mean and vari-

ance as the real posterior.

For a linear utility model U(x,θ) = Φ(x)Tθ, the computation of the poste-

rior approximation can be simplified from d dimensions (where d is the dimen-

sion of θ) to 1 dimension. The likelihood function depends on θ only through its

projection onto a particular direction defined by the input Φ(x). The key idea

is then to decompose θ such that one of the components of the decomposition

is perpendicular to Σ1/2Φ(x). The computations needed for the normalization

constant can be simplified as follows〈
g
(
Φ(x)Tθ

)〉
N (θ|µ,Σ)

=
〈
g

(
η
√

Φ(x)TΣΦ(x) + Φ(x)Tµ
)〉
N (η|0,1)

,

where g is the logistic function

g(z) =
1

1 + exp(−z)
,

and 〈
g
(
Φ(x)Tθ

)〉
N (θ|µ,Σ)

=
∫
g
(
Φ(x)Tθ

)
N (θ|µ,Σ) dθ .
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Similarly, computing the mean and covariance of the real posterior can be re-

duced to 1 dimension. For a more detailed description of the method used here

see [47, 4]. The same idea of efficiently updating the posterior distribution is

extended to generalized linear models in [35] using the Laplace approximation.

Which approximation technique performs better depends on the real poste-

rior distribution. If the posterior distribution has a form close to a Gaussian,

the simple Laplace’s method gives good results. For more complex posterior

distributions, ADF or EP give, in general, better approximations [39]. In the

setting presented in this paper, the product between a logistic function and a

Gaussian results in a posterior close to a Gaussian, thus the approximation is

very accurate and the choice of the approximation method does not have a big

influence on the result. In the experimental evaluation we used ADF.

C. EM Derivation

The basic idea in Bayesian hierarchical modeling is to assume that the pa-

rameters for individual models are drawn from the same hierarchical prior dis-

tribution.

We will first state the algorithm and then its derivation. We make the

common assumption of a Gaussian prior distribution, P (αj) = N (αj |µ,Σ) with

the same µ and Σ for all models. This prior is updated using Bayes’ rule based

on the observations from each scenario, resulting in a posterior distribution for

each individual model. Because the posterior is intractable, we approximate

it with a Gaussian. The hierarchical prior is obtained by maximizing the log-

likelihood of all data in a so-called type-II maximum likelihood approach. This

optimization is performed by applying the EM algorithm [24, 51], which reduces

to the iteration (until convergence) of the following two steps.

E-step: Estimate the sufficient statistics (mean µj and covariance matrix Σj)

of the posterior distribution corresponding to each individual model j,

given the current estimates (µ(t) and Σ(t)) of the hierarchical prior. The
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E-step is performed using one of the inference techniques mentioned in

Appendix B.

M-step: Re-estimate the parameters of the hierarchical prior:

µ(t+1) =
1
M

M∑
j=1

µj , (9)

Σ(t+1) =
1

τ +M

[
πµ(t+1)µ(t+1)T +

1
M

M∑
j=1

Σj+

I +
M∑
j=1

(µj − µ(t+1))(µj − µ(t+1))T
]
. (10)

The term
∑M
j=1(µj − µ(t+1))(µj − µ(t+1))T , in Equation (10), measures

the variance between the most probable estimates for different subjects;

the term 1
M

∑M
j=1 Σj measures the variance of the probabilities P (αj)

around these most probable estimates, averaged over all the subjects.

In very high dimensions, some of the eigenvalues of the covariance matrix

Σ may tend to infinity. For numerical stability, we therefore add a small

constant β to the diagonal of Σ−1, and set

Σ←
(
Σ−1 + βI

)−1
, (11)

after each update (10). With the update proposed in (11), the eigenval-

ues of Σ remain finite and we never observed problems with numerical

stability.

It is common practice to make approximations in the E-step (see e.g., [21, 40]).

In theory convergence can then no longer be guaranteed, but in practice, in

particular when the approximations are known to be very accurate (as it is our

case, see above) it usually works fine.

In the following we give the derivation of the M-step. Let Dj denote the

data obtained from subject j, D = {D1, . . . , DM} denote the data obtained from

all subjects, A = {µj ,Σj ; j = 1, . . . ,M} denote all parameters for all subjects,

and Λ(t) = {µ(t),Σ(t)} denote the parameters of the hierarchical prior at the
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tth iteration. In order to obtain the estimates of the hierarchical prior in the

(t+ 1)th iteration, we maximize the penalized log likelihood of all data

log[P (D|Λ(t+1))P (Λ(t+1))] = logP (D|Λ(t+1)) + logP (Λ(t+1)) .

We note that

logP (D|Λ(t+1)) = log
[
P (A, D|Λ(t+1))
P (A|D,Λ(t+1))

]
,∀A

and thus,

logP (D|Λ(t+1)) + logP (Λ(t+1))

=
∫
P (A|D,Λ(t)) log

[
P (A, D|Λ(t+1))
P (A|D,Λ(t+1))

]
dA+ logP (Λ(t+1))

= Q(Λ(t+1),Λ(t)) + logP (Λ(t+1))−
∫

P (A|D,Λ(t)) logP (A|D,Λ(t+1)) dA ,

(12)

with the “full data loglikelihood”

Q(Λ(t+1),Λ(t)) =
∫

P (A|Λ(t), D) logP (A, D|Λ(t+1)) dA , (13)

The EM algorithm that iteratively maximizes Q(Λ(t+1),Λ(t)) + logP (Λ(t+1))

is guaranteed to converge to a local maximum of the data likelihood since the

negative term in Equation (12) can only make things better when Λ(t+1) 6= Λ(t).

Different subjects are only coupled through their joint prior, i.e., we have

P (A, D|Λ(t+1)) =
M∏
j=1

P (Dj |αj)P (αj |Λ(t+1)) .

Plugging this into Equation (13) we get

Q(Λ(t+1),Λ(t))

=
∫
P (A|D,Λ(t))

M∑
j=1

log
[
P (Dj |αj)P (αj |Λ(t+1))

]
dA ,

=
M∑
j=1

∫
P (αj |Dj ,Λ(t)) logP (αj |Λ(t+1)) dαj +

constants independent of Λ(t+1) .
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Ignoring these constants, noting that we can skip the index of the integration

variable, and dropping the superscript notation for Λ(t+1), we obtain

Q(Λ,Λ(t)) = M

∫  1
M

M∑
j=1

P (α|Dj ,Λ(t))

 logP (α|Λ) dα .

The prior over Λ is a normal-inverse-Wishart distribution,

P (Λ) = P (µ,Σ) = N (µ|0, 1
π

Σ) IW(Σ|τ,Σ0) ,

with the inverse Wishart distribution with scale matrix Σ−1
0 defined as

IW(Σ|τ,Σ−1
0 ) ∝ det(Σ−1

0 )
τ
2 det(Σ)−

τ+d+1
2 exp

[
−1

2
Tr(Σ−1

0 Σ−1)
]

At each step the following function is maximized with respect to Λ

Q(Λ,Λ(t)) + logP (Λ)

= M

∫  1
M

M∑
j=1

P (α|Dj ,Λ(t))

 logP (α|Λ) dα + logP (Λ) .
(14)

The maximum is found by computing the gradients of the expression (14)from

above with respect to Λ = {µ,Σ} and setting these to zero. We compute below

the gradient of (14) with respect to Σ. We start by writing down only the terms

in (14) which depend on Σ.

QP(Σ) =
∫ M∑

j=1

P (α|Dj ,Λ(t))
[
− log det(Σ)1/2 − 1

2
(α− µ)TΣ−1(α− µ)

]
dα

− τ + d+ 1
2

log det(Σ)− 1
2

Tr(Σ−1
0 Σ−1)− 1

2
log det(Σ)− π

2
µTΣ−1µ

=

−1
2

M∑
j=1

∫
P (α|Dj ,Λ(t)) dα− τ + d+ 1

2
− 1

2

 log det(Σ)− 1
2

Tr(Σ−1
0 Σ−1)

− 1
2

∫ M∑
j=1

P (α|Dj ,Λ(t))(α− µ)TΣ−1(α− µ) dα− π

2
µTΣ−1µ

=− τ + d+ 2 +M

2
log det(Σ)− 1

2
Tr(Σ−1

0 Σ−1)

− 1
2

∫ M∑
j=1

P (α|Dj ,Λ(t))(α− µ)TΣ−1(α− µ) dα
π

2
µTΣ−1µ− π

2
µTΣ−1µ
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Taking the derivatives with respect to Σ of each of these terms, we get

∂ log det(Σ)
∂Σ

= det(Σ)Σ−T
1

det(Σ)
= Σ−1 ,

∂Tr(Σ−1
0 Σ−1)
∂Σ

= −Σ−TΣ−T0 Σ−T = −Σ−1Σ−1
0 Σ−1 ,

∂µTΣ−1µ

∂Σ
= Σ−1µTµΣ ,

∂

∂Σ

∫ M∑
j=1

P (α|Dj ,Λ(t))(α− µ)TΣ−1(α− µ) dα

= −
∫ M∑

j=1

P (α|Dj ,Λ(t))Σ−1(α− µ)(α− µ)TΣ−1 dα .

Collecting the terms from above and setting the derivative to zero, we obtain

Σ =
1

τ + d+ 2 +M

πµµT + Σ−1
0 +

∫ M∑
j=1

P (α|Dj ,Λ(t))(α− µ)(α− µ)T dα

 .
For each subject j, P (α|Dj ,Λ(t)) is the posterior distribution resulting from the

hierarchical prior with the previous estimates Λ(t). This posterior is approxi-

mated to a Gaussian, N (α|µj ,Σj), in the previous E-step. Then,∫ M∑
j=1

P (α|Dj ,Λ(t))(α− µ)(α− µ)T dα

=
M∑
j=1

∫
N (α|µj ,Σj)

(
ααT −αµT − µαT + µµT

)
dα

=
M∑
j=1

Σj +
M∑
j=1

µj(µj)T −
M∑
j=1

µjµT −
M∑
j=1

µ(µj)T +
M∑
j=1

µµT ,

and thus,

Σ =
1

τ + d+ 2 +M

πµµT + Σ−1
0 +

M∑
j=1

Σj +
M∑
j=1

(µj − µ)(µj − µ)T

 ,

which is the biased estimator of the variance and where µ is the new mean

found in the M-step. To obtain an unbiased estimator we consider

Σ =
1

τ +M

πµµT + Σ−1
0 +

M∑
j=1

Σj +
M∑
j=1

(µj − µ)(µj − µ)T

 ,
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which for Σ0 = I gives Equation (10). The update for the mean is obtained in

a similar way and leads to (9).

Note that considering the maximum-likelihood estimate, without the pe-

nalization term, i.e., maximizing Q(Λ(t+1),Λ(t)), has the nice interpretation of

the negative Kullback-Leibler divergence (up to again irrelevant constants in-

dependent of Λ(t+1)) between a single Gaussian P (α|Λ(t+1)) and a mixture of

Gaussians, where each of the Gaussians in the mixture corresponds to the pos-

terior of a subject given the previous setting of prior mean and variance. The

maximum of this function is then found by moment matching: we have to match

the moments of the single Gaussian to the moments of the mixture of Gaussians.

�
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