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A Bayesian Framework for Combining Protein
and Network Topology Information for Predicting
Protein-Protein Interactions

Abstract—Computational methods for predicting protein-
protein interactions are important tools that can complement
high-throughput technologies and guide biologists in designing
new laboratory experiments. The proteins and the interactions
between them can be described by a network which is
characterized by several topological properties. Information
about proteins and interactions between them, in combination
with knowledge about topological properties of the network,
can be used for developing computational methods that can
accurately predict unknown protein-protein interactions. This
paper presents a supervised learning framework based on
Bayesian inference for combining two types of information: i)
network topology information, and ii) information related to
proteins and the interactions between them. The motivation of
our model is that by combining these two types of information
one can achieve a better accuracy in predicting protein-protein
interactions, than by using models constructed from these two
types of information independently.

Index Terms—Bayesian methods, protein-protein interac-
tion, network analysis, topology

I. INTRODUCTION

The reconstruction of biological networks is currently an
active research subject with important applications rang-
ing from basic biology to medical applications. The term
“biological network” is used for graphs in which vertices
represent genes or proteins and edges represent various
types of interactions between them. Since most of the cel-
lular components exert their functions through interactions
with other components, inferring biological networks is
crucial for the understanding of the cellular functions and
biological processes inside a living cell. The reconstruction
of these biological networks is a major challenge with im-
portant applications. For example, knowledge about which
proteins interact in the human proteome would highlight
key proteins that interact with many partners which could
be interesting drug targets, this application refers to the new
emerging field of network medicine [1], which is a network
based approach to human disease.

Research in molecular biology and genetics has already
provided a partial view of these biological networks. The
presence of edges in the network can only be established
by costly and tedious laboratory experiments. However,
recent high-throughput technologies, like for example, the
yeast two-hybrid systems for protein-protein interactions
(PPIs), provide large numbers of likely edges in these
graphs, but with a high rate of false positives. Therefore,
much work remains to complete (adding currently unknown
edges) and correct (removing false positive edges) these
partially known networks. These issues can be addressed

using computational methods which can make predictions
about the presence or absence of edges in the network.
Accurately predicting which proteins might interact can
help in correcting the wrong edges and in completing
the network by designing and guiding future laboratory
experiments.

Computational techniques are based on the idea that
information about individual genes and proteins, such as
their sequence, structure, subcellular localization, or level
of expression across several experiments, can provide useful
hints about the presence or absence of interactions between
them, thus about edges in the network. For example, two
proteins are more likely to physically interact if they are
expressed in similar experiments, and localized in the same
cellular compartment. Following this line of thought, com-
putational methods which take roots in machine learning
have been proposed in recent years for inferring biological
networks. There are two approaches in computational meth-
ods for PPI prediction: i) the unsupervised approach which
estimates the edges solely from data related to nodes [2],
and ii) the supervised approach for which the presence or
absence of edges is known for part of the network, and this
information is used for inferring the unknown edges. This
last setting is becoming more realistic as high confidence
networks have become increasingly available. In this article
we consider the supervised learning setting, in which case
PPI prediction can be seen as a pattern recognition problem,
namely to find patterns in the interacting protein pairs that
do not exist in the non-interacting pairs. In this pattern
recognition problem, information about proteins and labels
for protein pairs as interacting or not, supervise the estima-
tion of a function that can predict whether an interaction
exists or not between two proteins. This can be further
framed as a binary classification problem which takes as
input a set of features for a protein pair and gives as output
a label: interact or non-interact. Binary classification has
been studied extensively in machine learning community,
and many algorithms designed to solve it have been also ap-
plied for predicting PPIs, including Bayesian networks [3],
kernel-based methods [4], [5], logistic regression [6], [7],
decision trees and random forest based methods [8], [9],
[10], metric or kernel learning [5] and [11], [12], [13].

The performance of the computational methods for net-
work reconstruction, i.e., how well they predict the pres-
ence/absence of edges in the network, depends on the
quantity and quality of the available training data. The
more information one has, preferably from a multitude of
independent sources, the more accurate one can predict and
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the better one can decide [14]. To get the most out of
the available information, computational methods should
be capable to incorporate any type of data. In addition to
information about proteins and interactions between them,
PPI networks are characterized by several topological prop-
erties [15], [16], [17], [18]. Network topology can uncover
important biological information that is independent of
other available biological information [19], [20]. One of
the most important topological properties is the existence
of a few nodes in the network, called hubs, which have
many links with the other nodes, while most of the nodes
have just a few links. This characteristic is present in PPI
networks and also in other real-world networks, such as the
internet [21] and citation networks [22]. Summarizing, we
can distinguish two types of information that can be used
for predicting PPIs: first, information about proteins and
labels for protein pairs as interacting or not, and second,
information about the topological properties of the network.
These two sources of information are both valuable and can
complement each other for constructing accurate models
for predicting interactions between proteins. We combine
methods that have been previously used for modeling each
type of information separately. We use a random graph
generator for addressing the topology information and a
naive Bayes model for addressing the feature information.
Computational tractability was the reason behind the model
choices made. The combined model is constructed in a
Bayesian framework in which the a priori information
about network topology is incorporated in a supervised
algorithm for PPI prediction. We prove that by making a
few simplifying assumptions, both topological and protein
information can be incorporated and we show experimen-
tally that this combination improves the prediction accuracy
in PPI networks.

This paper is structured as follows. We finish this section
by discussing related work and some terminology and
notation that will be used throughout the paper. Section
2 describes the Bayesian framework that combines protein
and network topology information for predicting protein-
protein interactions. Section 3 presents the experimental
evaluation of our model and comparisons with other ap-
proaches. We conclude in Section 4 and discuss some
possible directions for future research.

A. Related work

The two approaches, unsupervised and supervised, for
developing computational methods for PPI prediction will
be discussed in the following.

On the one hand, the unsupervised approaches recon-
struct PPI networks solely based on a set of protein at-
tributes. In this category there are approaches which investi-
gate the use of topology information. Not specifically to PPI
networks, but to graphs in generals, [23] define a kernel-
based framework for unsupervised structured network in-
ference taking into account the graph topology by defining
kernels based on topological properties such as degree,
closeness centrality, betweenness centrality and shortest

path. [24] propose a multi-way spectral clustering method
for link prediction in biological and social networks. [25]
reconstruct gene regulatory networks from gene expression
data by proposing a structure prior which incorporates the
scale-free property. [26] propose a likelihood method in
order to fit a hybrid preferential attachment model to some
protein-protein interaction networks, obtaining estimates of
the model parameters. [27] investigate the incorporation of
different types of topology information, such as network
motifs. [28], [29] use [;-type regularization to encourage
sparse structures in the graph learned. In [30] we introduced
a framework for incorporating both topology and feature
information that forms the basis of the current paper, which
extends [30] by a substantial analysis of the topology
learning using the Bayesian framework and experimental
comparisons of our model with other state-of-the-art meth-
ods including SVM, decision tree, random forest.

Our approach is different from the other papers men-
tioned above, in that we are not considering an unsuper-
vised learning setting, but we also use the information about
labels of protein pairs, if they interact or not. Topology only
has been shown to be able to characterize drug-targets in
PPI networks [31], to predict protein functions [32] and
PPIs [33], [34] and to complement sequence information
in various biological tasks, like for example, homology
detection [35].

On the other hand, several supervised learning ap-
proaches such as EM-based approach [36], mixture-of-
experts approach [37] and metric or kernel learning [38],
[11], [12] have been proposed for network inference. Most
of them do not use the topology information as an input
feature but some of them take it into account during the
training phase to structure the output space [38], [11], [12].
Supervised network inference from integrating different
types of data is investigated in [5], [39]. Treating PPI pre-
diction as a supervised inference problem is not straightfor-
ward since data is typically associated to individual proteins
while the labels correspond to pairs of proteins. This issue
is addressed by constructing features for pairs of proteins
from individual protein features. Features for protein pairs
can be constructed from various sources of information, for
example, protein sequence, gene expression data, functional
properties of proteins, etc. These sources of information
are heterogeneous, however they can be combined such
that the heterogeneity is taken into account by using a
mixture of feature experts method [37], resulting in an
enriched set of features. We used these types of features for
one data set in the experimental evaluation. Furthermore,
informative features for predicting PPIs can be constructed
from sequence information only, for example [40]. Each
protein is represented by a vector of pairwise similarities
against large subsequences of amino acids created by a
shifting window which passes over concatenated protein
training sequences. Each coordinate of this vector is the E-
value of the Smith-Waterman score [41]. In many cases the
problem of identifying high-quality features can in itself be
quite difficult and has led to the development of new kernels
appropriate to encode a protein’s properties. Once a kernel
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between proteins is defined, pairwise kernels between pairs
of unordered proteins can be defined based on tensor prod-
ucts such as proposed by [4] for protein function prediction,
further investigated and analyzed by [42]. Finally, extension
of supervised network inference methods to other machine
learning paradigms as active learning, multi-task learning,
and semi-supervised learning, have also been employed for
improving the prediction of PPIs [43], [44], [45], [13].
Furthermore, some approaches [46] take into account the
unbalancedness of data when predicting PPI and others [47]
consider the protein structure when making the predictions.

B. Notation

1)

The terms ‘“network” and “graph” are used synony-
mously throughout this paper. An undirected network G =
(V, E) is a mathematical object defined by a set of nodes
V = {v1,vq,...,0n} together with a set of undirected
edges E consisting of unordered pairs {v;,v;},v; # v;
taken from V. Boldface notation is used for vectors and
matrices and normal fonts for their components. Upper-
scripts are used to distinguish between different vectors
or matrices and lowerscripts to address their components.
Capital letters are used for constants and small letters for
indices, e.g., i = 1,..., . The notation N (p, ) is used
for a multivariate Gaussian with mean @ and covariance
matrix 3. The transpose of a matrix M is denoted by
MT.

II. METHODS

The data that is being considered consists of a list
of proteins and the information associated to them: each
protein is represented by a numerical vector which en-
codes the features associated to that protein (this vector
can be constructed from, for example, gene expression
data, protein sequence, etc.) and labels for protein pairs
as interacting or not (the information about the labels
can be seen as an adjacency matrix associated to the list
of proteins). In addition, there is information about the
topological properties of the network, for example, the
fact that in PPI networks there are just a few hubs and
that the majority of nodes in the network have just a few
connections. The goal of the methods that we propose is
to show that by using both types of information, topology
and feature information, the prediction accuracy in PPI
networks can be improved.

The approach that we use to join topology and feature
information is graphically summarized in Figure 1. It
consists of a random graph generator model and a naive
Bayes model which are combined using Bayes’ rule to
finally arrive to a logistic regression model (we will ignore
for the moment the details of this figure but come back
to it throughout this section). The random graph generator
gives rise to networks which, based on topology can all be
plausible hypotheses for the PPI network that we want to
reconstruct. Incorporating the actual data will reduce this
set of plausible hypotheses to just a few, out of which
we can pick the one which has the highest likelihood. We

\% Bayes’ rule

Random
graph a ) - .
generator Naive Bayes Logistic regression

Fig. 1.  Left box: random graph generator model. Center box: naive
Bayes model. Right box: the result of applying Bayes’ rule, the model
which combines topology and feature information.

implement this in a Bayesian framework by treating our
random graph model as a prior and define a probability
model for the features given the absence/presence of an
edge and combine these two using Bayes’ rule, to finally
arrive at a model incorporating both topological and feature
information. The way in which each of these models is
constructed and then combined is described in the rest of
this section.

We deliberately will choose relatively simple and well-
known models: naive Bayes for incorporating feature-based
classification and a general random graph generator as a
prior for PPI networks. As we will see, they combine nicely
and such that (approximate) Bayesian inference becomes
feasible. Other model choices, e.g., that better incorporate
correlations between variables or more subtle properties of
PPI network, may lead to even better performance, but then
likely at the expense of computational efficiency (see also
the discussion in Section IV).

A. Topology of PPI Networks

We will focus on one essential topological characteristics
of PPI networks: the node degree distribution. The degree
of a node represents the number of connections the node
has with the other nodes in the network. The probability
distribution of these degrees over the whole network, P(k),
is defined as the fraction of nodes in the network with
degree k,

where N is the total number of nodes in the network and
Ny is the number of nodes with degree k. The majority
of real-world networks have a node degree distribution
that is highly right-skewed, which means that most of
the nodes have low degrees, while a small number of
nodes, known as “hubs”, have high degrees. The degree
of hubs is typically several order of magnitudes larger
than the average degree of a node in the network. This is
a distinctive characteristic of PPI networks as well [15].
It has been shown that the connectivity of a protein is
related to its function [48], high connectivity is often
associated with proteins involved in information storage
and processing (transcription in particular) and cellular
processes and signaling. Among the non-hubs, there are
many proteins that participate in metabolism, while proteins
with poorly characterized functions frequently have few or
no interactions.
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The clustering coefficient is a measure of degree to which
nodes in a graph tend to cluster together. In most real-world
networks, and in particular social networks, nodes tend to
create highly inter-connected regions, called clusters [49].
The clustering coefficient has been used in combination
with the degree distribution to determine the topology of
the interactome [17], showing that the complete interactome
is either highly skewed such as in scale-free networks or
is at least highly clustered. [16] showed the existence in
PPI networks of highly inter-connected regions which are
correlated with biological function and large multi-protein
complexes.

The distance d(u, v) between two nodes is the path with
minimum length, where length is the number of edges. The
average distance of G is the average over all distances
d(u,v) for u and v in G. It represents closeness and
measures how quickly information can be transferred in
a network The graph diameter of G is the maximum
distance d(u,v) where u and v are in the same connected
components. For scale-free networks with degree exponent
2 < 7« < 3 which have been observed for most real-
world networks, the average distance is very small, i.e.,
of the order loglog NV [50], which is known as the small
world phenomenon [49] and the diameter is of the order
log N [50]. The PPI networks are shown to adhere also to
the small world phenomenon, i.e., most pairs of proteins are
connected to each other by a short chain of links involving
several intermediate proteins.

B. Random Graph Generator

The first step of our approach is to define a model
for generating networks with the node degree distribution
similar to the one of PPI networks (the left-hand side box of
Figure 1). The random graph generator that we define here
is inspired by the general random graph [51]. The general
random graph method assigns each node with its expected
degree and edges are inserted probabilistically according to
a probability proportional to the product of the degrees of
the two endpoints, i.e., the probability of an edge between
two nodes ¢ and j is proportional to the product of the
expected degrees of the nodes 7 and j. We introduce a latent
variable, d(¥), related to the degree of node i, i.e., d*) is
roughly proportional to the degree of node i. Let e(*)) be
a random variable related to the presence or absence of a
link between nodes ¢ and j, e has two possible values:
e() = 1 if a link is present between nodes i and j, and
e(i) = —1 if a link is not present between nodes i and j.
Our model generates links in the network as follows,

(i7)

P(e)]d® d0)y o (v/d@)di))e

1 , ,
= exp e(”)i(logd(l) +logdW)| | (1)

p(e(ij) - 1\d(i),d(j)) o
p(e(ij) — —1|d(i),d(j)) o

dDd0)
1
VdDd@)
p(e(ij) - l\d(i),d(j))
P(el) = 1]d®), 40))
T P(el) = 1]d®, dWD) + P(eld) = —1[d®, d@))

d®dG) d® @)
— @dG)’
dOdu) L () = T 1+d0d
P(eli) = —1]d®, 4
p(e(ij) — ,1|d(i>,d(j))

~ P(el) = 1]d®, dW) + P(eld) = —1[d®, d@))

1
NZOFE) 1
(OF € )
\/d()d(a + \/W 1+d d

In Figure 1, the random variables d?) and d¥) are repre-
sented by white color circles because they are unobserved
while the variable e(*/) is represented by a gray color circle
since it is observed. The random graph generator can create
networks with a desired topology, more specifically with a
desired node degree distribution, by assuming a well-chosen
distribution for the latent variable associated with the node
degree, i.e., d® . The first choice for the distribution over
d® would be a power-law which is in general used for
modeling the degree distribution of PPI networks [15].
Networks with a power law distribution for node degrees
are referred to as scale-free networks [52] and include
among others the world wide web, metabolic networks or
citation networks. An exponential distribution for d(¥) and
d) gives rise to a scale-free network [51]. A log-normal
distribution is another option for modeling the node degree
distribution of scale-free networks [53]. Power-law and log-
normal distributions are intrinsically connected in the sense
that similar generative models can lead to either power law
or log-normal distributions [54] and are both suited in our
case [55]. For computational reasons which will become
clear later, we consider a log-normal distribution for d(i),
this means that log d® is normally distributed,

P(logd®¥) = N(logd?; mg, 02) , )

where mg is a scaling parameter, and the parameter o
controls the shape of the distribution. These parameters can
be set such that the networks randomly generated with the
model from Equation (1) have the desired topology. We
have defined d*) to be roughly proportional to the degree
of node 7, thus a log-normal distribution for d™ results in
a distribution for the degree of node ¢ which is approx-
imately log-normal, which is similar to what is observed
in practice. In summary, the random graph generator for a
given topology, that we define here, performs the following
steps. 1) Choose mg and o( the parameters of the log-
normal distribution for d(¥). 2) Draw from this distribution
a random sample (d',...,d") of size N the number of
nodes in the network. 3) Based on this sample construct
the network by inserting edges with probability given in
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Fig. 2. Node degree distributions of three networks randomly gener-
ated from three different log-normal distributions for dm top: mo =
—3, o9 = 1, center: mg = 0, oo = 1 and bottom: mg = 3, o9 = 1.

Equation (1). As examples, Figure 2 shows the node degree
distributions of three networks randomly generated with the
method described above and starting from three settings of
the parameters of the log-normal distribution for d(*); top:
mgo = —3, 0g = 1, center: mg = 0, op = 1 and bottom:
mo = 3, g = 1. The first network is very sparse, with a
connectivity of 5% (the connectivity is represented as the
percentage of actual links from the total number of possible
links). The second and third networks have connectivities
of 50% and 95%, respectively, and are quite far from the
topology of PPI networks. For mg < —3 the networks
become more sparse and for mg > 3 the networks become
more connected. The parameter o controls the width of the
distribution.

The histograms in Figure 3 compare the node degree
distribution in two types of networks: 1) PPI networks
observed in two species: yeast and human (the histograms
on the left-hand side) and 2) networks randomly generated
from the random graph generator defined above (the his-
tograms on the right-hand side). The description of the PPI
networks for yeast and human is given in Section III-A. The
parameters of the log-normal distribution for d¥ were set
such that the histograms of the random networks are similar
to the histograms of the PPI networks, for the random
network from the first row: mg = —3.7 and 0y = 1 and
for the random network from the second row: mg = —4.2
and o9 = 1.11. These histograms show that the random
graph generator that we defined indeed yields networks with
node degree distribution very similar to those observed in
practice. Based on Figures 2 and 3, an appropriate choice
for the parameters of the log-normal distribution that we
will use for the experimental evaluation is my = —3 and
gp = 1.

C. Bayesian Framework for Combining Topology and Fea-
ture Information

In order to combine topology and feature information,
we treat the random graph model as a prior and define a
probability model for the features of a protein pair given
the absence/presence of an interaction between the proteins.
We use a naive Bayes model to express the likelihood of the
features for a protein pair given the absence/presence of an
interaction. Let D represent the dimension of the feature
vectors. The likelihood is thus computed as a product of
1-dimensional Gaussian distributions, each Gaussian distri-
bution expressing the probability of a feature component

,g”), k =1,...,D given the edge variable e(*)) and the
parameters: mean my, and variance o,

p(f(ij)‘e(ij)’m,g

3)

We refer to the center box of Figure 1 for a graphi-
cal representation of this model. The naive Bayes model
defined above treats the features as independent, which
might not be the case in practice. Despite this simplifying
assumption, the naive Bayes model is known to be a
competitive classification method with similar performance
as the closely related logistic regression algorithm.

The posterior distribution for e(*/) which combines topol-
ogy and feature information is computed using Bayes’ rule
as the product between the prior defined in Equation (1)
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of the log-normal distribution for the latent variables d(): mg =

and the likelihood terms defined in Equation (3), i.e.,

P(eli)| £ g@ d(j)>
x P(e m)|dz) dl ) (f(w ‘e(w d® d(J))

i) L i j Zk( $) emmk)Z
o exp e(J)i(logd()—i—logd(j)) 572
)
(i) (i)
x exp elid) — (logd(z)—i—logd(”) M
o
(5)
(i) fkm L oed® + L1os d0)
=exp|e Z ilogd —|—§1ogd )
(6)

where from (4) to (5) we discarded the square terms
which do not depend on e(). In the above, we can
ignore any term that does not depend on e(*), since it
will only affect the normalization. This includes the term
(e¥9))2m?2 /o2, since e(¥) € {—1,1}. The normalization
term does play a role and, when incorporated, leads to
Equation (8) below. The unknown quantities of our model

—3.7 and 09 = 1 (top row) and mo = —4.2 and 09 = 1.11 (bottom row).

are 2, k={1,...,D} and logd®, i = {1,..., N}, and
these w111 be estlmated based on the available training data
in a learning procedure that we describe below.

The first step is to adjoin the unknown quantities in a
single random vector,

le

mi
. 1
o2

w:[?,

gd®, ...,

Slogd™]. )

and the same for the information available, which is protein
features and topological information

209 — [f69) )]

where t(7) is the position vector having 1 on positions
i and j and O everywhere else. Using this notation, the
normalized probability from Equation (6) of an interaction
between the proteins ¢ and j can be rewritten as

1

P (15) | (i) — _ . 8
(€™, w) = ¢ T exp(—2e@ wT ) ®)
Note that in the sum
D= o Y wpaty” . ©)
k=1 k=1
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the first term on the right-hand side originates from the
protein features information and the second term from the
topological information.

The unknown parameter w is learned in a Bayesian
framework which consists in setting a prior distribution
for it, and updating this prior based on the available
observations. The update is performed using Bayes’ rule,
ie.,

nObS .. ..
P(w|observations) o H P(el(”)|a:l(”),w)P(w) . (10)
1=1
where ng,s is the size of the training data, i.e., the
number of known interacting/non-interacting protein pairs.
P(el(”) |a:l(”), w) is given in Equation (8). P(w) is the prior
and we choose it to be a Gaussian distribution

P(w) = N(w; p,X) .

The hyperparameters p and X of the prior are chosen such
that the topological information is incorporated into the
model. This is implemented by making the correspondence
with the prior for the latent variables d(¥). Recall from
Equation (7) that w;p = 2logd®, i = 1,...,N and
from Equation (2) that logd(® is normally distributed,
consequently w;p will also be normally distributed, i.e.,

2
w,»+D~N<";°,ZO> i=1,....N.
A good choice for the hyperparameters my and oy was
discussed in relation to Figures 2 and 3. Thus, we set
KD+1:N = % = —1.5 which corresponds to a network
with a node degree distribution of the form displayed in
the histogram from top in Figure 2. We will see in the
experimental evaluation, Section III-C2, that the choice
of the prior parameters that correspond to the topology
information has a big influence on the performance of
the models. The hyperparameters p;, 7 = 1,...,D that
correspond to the feature information were set to 0, and the
covariance matrix ¥ was chosen to be the identity matrix.
This choice for the parameters of the prior corresponding
to protein features makes sense when the features are
normalized like we do in the experimental evaluation.

In this Bayesian framework, predictions can be done
for an unknown interaction between a pair of proteins
i',j’ characterized by the feature vector (‘7). These
predictions can be done either averaging the posterior over
w in Equation (8) or by using a point estimate of this
posterior, let w* be the mean of P(w|observations), and
computing P(e("'7)|2('3") aw*) using Equation (8).

Bayesian inference is known to be computationally ex-
pensive. However, in the setting presented in this paper,
the computations can be made more efficient by exploiting
the sparsity of the input data. The vectors (%) are sparse
because their components ¢(*/) of dimension N (the num-
ber of proteins) contain only two non-zero elements, on
positions ¢ and j.

We refer back to the graphical sketch of our model in
Figure 1 at the beginning of this section. The box on the

left-hand side, corresponds to the random graph generator
model. The observation e(”/), which expresses the presence
or absence of an edge between nodes 7 and j, depends
on the latent variables d¥ and dU) which are roughly
proportional to the degrees of nodes ¢ and j. The random
graph generator model incorporates feature information
through the naive Bayes model with unknown parameters
m and o, represented in the center box. The combination of
the two models is obtained using Bayes’ rule. The result is
shown in the right-hand side box. The unknown quantities
d®, d), and m, o are combined in the node w which is
unobserved, and f(*7) together with £(*)) which is implicitly
expressed by indices ¢ and j, form the observed quantity
()

Summarizing, in order to incorporate topological infor-
mation for PPI prediction we propose a relatively simple
method: logistic regression on an extended feature space.
The extended feature space is obtained by adding to the
feature vector for a pair of proteins i and j, £(7), a vector of
dimension /N with 1 on positions ¢ and j and 0 everywhere
else. The regression weights are treated as latent variables
and those weights corresponding to the additional topology
features are in a one-to-one correspondence with the latent
variables d(¥) of the random graph generator. The scale-
free like architectures of the random graph generator follow
from a log-normal prior distribution on these d(¥)s.

In the experimental evaluation from Section III we will
compare four models. These models are based on the same
Bayesian framework from Equation (10) with a Gaussian
prior and likelihood terms of the form given in Equation (8).
The models differ in the type of information they use
and how they combine this information. Specifically, the
models vary in the way of computing the dot product from
Equation (9) and on the parameters of the Gaussian prior.

1) Model 1 (Features+Topology): is the model we intro-
duced above. It makes use of the dot product from
Equation (9) and uses a Gaussian prior of dimension
D+ N with mean p1.p = 0, ppy1.8v = —5 = —1.5
and covariance matrix equal to the identity matrix.

2) Model 2 (Features only): uses only information about
proteins, thus the dot product is computed as

D
w'z() =3 w7+ WP

k=1

The second term on the right-hand side of Equa-
tion (11) is a bias term to address the unbalancedness
of the data. This bias term also corresponds to the
second term on the right-hand side of Equation (9);
for an edge (/) the contributions in Equation (9) are
Wp4; + wp4; while in Equation (11) we constraint

Wpy; = 3wp41, Vi = 1,..., N. This observation
also motivates the choice of the prior for this model:
mean p;.p = 0 and pupy; = —3 and covariance

equal to the identity matrix.
3) Model 3 (Topology only): uses only topology infor-
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mation, thus the dot product is computed as

N
wl @) = Zwkté”) .

k=1
The Gaussian prior is of dimension N with mean
equal to the vector p;.;y = —1.5 and covariance
matrix equal to the identity matrix. The choice for
p1.y = —1.5 corresponds to the log-normal distri-
bution with mg = —3, thus to a network with a node
degree distribution of the form of the top plot from
Figure 2.

4) Model 4 (Topology-enriched features): uses the in-

formation about proteins and about topology in the
following form

D

wlz(@) = Z wkf,gij) + wWpy1 log(d(i) +1)
k=1
+ wpz log(d¥) +1)

where d*) and d%) are the estimated degrees of nodes
¢ and j computed on the training data. Basically, the
features (%) for a pair of proteins i and j are being
extended by adding two new columns corresponding
to the degrees of nodes ¢ and j computed on the
training set. For computational reasons we considered
the logarithms of node degrees to which we added
1. The idea behind this model is similar to the one
used in [56], [44], i.e., the topological features are
added to protein features resulting in an enriched
set of features. The features are being standardized
and the parameters of the Gaussian prior are set to
M1.p+2 = 0 and covariance equal to the identity
matrix.

III. RESULTS

The four models previously described were empirically
evaluated and the results are presented in this section.

A. Data Sets

We used two data sets. Details for each of them are given
below.

The yeast data set was used in [36], [12] and it consists of
the high confidence physical interactions between proteins
highlighted in [57]. The PPI network has 984 nodes (pro-
teins) connected by 2438 links (interactions). We consider
all the protein pairs not present in the 2438 interactions
as non-interacting. The degree distribution of the nodes is
shown in the top-left plot in Figure 3. The yeast PPI graph
is very sparse, as a result the data is highly unbalanced,
with less than 1% from the total examples belonging to
the positive class. We balanced the data set by sampling a
number of negative examples equal with the number of
positive examples. For each protein pair we considered
a vector of features of dimension 5 representing gene
expression values under different experimental conditions.

The human data set was created and made available by
[37] and consists of protein pairs with an associated label:

interact or non-interact. Unlike positive interactions, non-
interacting pairs are not experimentally reported. Thus, a
common strategy is to consider as non-interacting pairs
a randomly drawn fraction from the total set of potential
protein pairs excluding the pairs known to interact. The
resulting data set has 14,608 interacting pairs and 432,197
non-interacting pairs. The PPI graph consists of 24, 380
nodes connected by 14,608 edges. As in the case of the
yeast data set, the PPI graph of the human data is very
sparse. The degree distribution of the nodes is shown in
the bottom-left plot on Figure 3. We balanced the data
set by sampling a number of negative examples equal
with the number of positive examples. Each pair of pro-
teins is characterized by a 27-dimensional feature vector.
The features were constructed based on Gene Ontology
(GO) cell component (1), GO molecular function (1), GO
biological process (1), co-occurrence in tissue (1), gene
expression (16), sequence similarity (1), homology based
(5) and domain interaction (1), where the numbers in
brackets correspond to the number of elements contributed
by the feature type to the feature vector. Homology based
features were derived from the protein-protein interaction
data sets, but more sophisticated approaches based on
HMM or Markov random fields [58], [59] could have also
been used here. Domain-domain interactions were derived
for each candidate protein pair using the method described
in [60].

B. Experimental Setup and Evaluation

The experimental setup considered a part of the
data for training and the rest for testing. The training
data was used to learn the models and the testing
data was used to evaluate the performance of these
models for predicting PPIs. We randomly sampled
10 training sets containing different percentages
(10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,90%)  from
the total observations. The training features were
standardized to have mean zero and standard deviation
of one. We used area under the receiver operating
characteristic curve (AUC) as a measure for evaluating
the performance. We can interpret the AUC statistic as the
probability that a randomly chosen missing edge (a true
positive) is given a higher score by the method than a
randomly chosen pair of proteins without an interaction (a
true negative). The entire training and testing procedures
for all percentages of data were repeated 10 times on
different observations in training and testing and average
results (mean + standard deviation) over the 10 splits of
the data into training and testing were reported.

C. Performance

Tables I and II show the performance of the four models
discussed in Section II and four other models from the
literature for predicting PPIs on the two data sets: yeast (Ta-
ble I) and human (Table II). Model 1 (Features+Topology)
represents the Bayesian framework for combining feature
and topology information, Model 2 (Features only) uses
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only protein information, Model 3 (Topology only) uses
only topology information and Model 4 (Topology-enriched
features) uses protein features which are enriched with node
degrees. For comparison we used four other approaches:
SVM, SVM logistic (which fits logistic models to the SVM
outputs), decision tree (the C4.5 decision tree [61]) and
random forest classifier [62]. For the implementation of
the classifiers used for comparison we used the WEKA
toolbox [63]. The protocol described in Section III-B was
used for all methods considered and the averaged AUC
scores with their standard deviations are reported.

The results show that the combination of the two sources
of information, protein features and topology, gives a better
performance than using only one type of information. In
particular Model 1 (Features+Topology) performs signifi-
cantly better than Model 2 (Features only) in most of the
cases. Model 1 and Model 4 have a similar performance
for human data while Model 1 performs better than Model
4 for yeast data. An explanation for this is related to how
the protein features were constructed in the two cases; for
yeast data the features for a protein pair resulted from
summing the feature vectors corresponding to the two
proteins, while for human data the protein features are
more related to the protein pair than to individual proteins.
Model 1 incorporates the topological information through
a Bayesian prior, Model 4 just includes the node degrees
computed on the training data as features. Both are valid
options, but Model 1 empirically outperforms Model 4,
arguably because the probabilistic framework incorporates
the uncertainty in the degrees instead of considering them
fixed and given. The results vary also as a function of
the size of the training data. For a small training set the
network topology is not well defined, and we can see
that in this case the improvement is smaller, but, as we
increase the training set, meaning that the knowledge about
the network topology, i.e., about which nodes are hubs,
increases, the performance obtained by adding the topology
information improves. The random forest classifier has been
shown to perform very well on predicting PPIs [10], [64].
This is also the case for this comparison, however, we
notice that the best performance is obtained by Model
1 (Features+Topology) which is the Bayesian framework
for combining topology and feature information that we
propose in this work.

1) Topology Learning: The combination between the
protein features and topology information from Model 1
has the best performance in comparison with the other
models since it is able to learn faster and more accurate the
topology of the network, which in this case refers to node
degrees. In order to show this, we analyzed how accurate
the degrees of the nodes are estimated in the cases of
Model 1 (Features+Topology) and Model 2 (Features only).
The comparison was performed on the yeast data. Both
models were learned on the training data. The predicted
node degrees were computed on the test data by summing
the predictive probabilities from Equation (8) for edges
e() in which one of the indices i or j corresponds to
the node of interest. The estimation of the node degrees

for the two models is shown in Figure 4 with the z-axis
showing the percentage of data used for training, and the y-
axis showing the error of the estimates measured using the
root mean square of the difference between the predicted
and actual node degrees (top plot) and the root mean square
of the difference between the logarithms of the predicted
and actual node degrees (bottom plot). Where the root
mean square of the node degrees themselves measures the
absolute error in estimated node degrees, which is quite
sensitive to correctly estimating the hub nodes, the root
mean square of the logarithms measures the relative error.
It can be seen that indeed Model 1 (Features+Topology)
gives a much better estimate to the actual node degrees in
comparison to Model 2 (Features) and this explains also
why the performance of Model 1 is better than that of
Model 2 as shown also in Tables I and II.

10
—e—Features
—Features+Topology
8
6
S
5]
4
2
0 A A A A ,
0 0.1 0.2 0.3 0.4 0.5
% training data
15
—e—Features
—Features+Topology
1.25
S
(]
0.75
0.5

0 0.1 0.2 0.3 0.4 0.5
% training data

Fig. 4. The root mean square of the difference between the predicted
and actual node degrees (top) and between the logarithms of the predicted
and actual node degrees (bottom) for the two models: Model 2 (features
only) and Model 1 (features+topology) as a function of the percentage of
data considered in the training set.

The topology information acts in controlling the node
degree distribution and forbidding producing too many
nodes with extra large degrees. The topology information
enters in our model as a prior which favors networks with
degree distributions right-skewed (similar to the top plot
from Figure 2 and the plots from Figure 3 and not like the
middle and the bottom plot from Figure 2), thus a few hubs
and the rest of the nodes with just a few connections.
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TABLE I
EXPERIMENTAL RESULTS FOR YEAST DATA SET. AUC IS USED AS A MEASURE FOR EVALUATING THE
PERFORMANCE, AVERAGE RESULTS (MEAN £ STANDARD DEVIATION) ARE BEING REPORTED. THE RESULTS ARE
SHOWN FOR THE FOUR MODELS DISCUSSED IN THIS PAPER AND ENUMERATED AT THE END OF SECTION II:
MODEL 1 (FEATURES+TOPOLOGY), MODEL 2 (FEATURES ONLY), MODEL 3 (TOPOLOGY ONLY) AND MODEL 4
(TOPOLOGY-ENRICHED FEATURES). THE TABLE CONTAINS FOR COMPARISON THE RESULTS OBTAINED FOR FOUR
OTHER EXISTING METHODS: SVM, SVM LOGISTIC, DECISION TREE AND RANDOM FOREST. THE COLUMNS

REPRESENT DIFFERENT PERCENTAGE OF DATA CONSIDERED FOR TRAINING AND THE REST FOR TESTING.

10% 20% 30% 40% 50%
Model 1 0.90 £ 0.02 094 +0.01 096 +0.00 0.97 +£0.00 0.97 + 0.00
Model 2 0.70 £ 0.00 0.71 £0.00 0.71 =£0.00 0.71 &=0.00 0.71 &+ 0.00
Model 3 0.89 +0.02 092 +0.01 095 +0.01 0.95 4+ 0.01 0.96 + 0.00
Model 4 0.74 £ 0.07 0.80 & 0.06 0.81 = 0.07 0.81 = 0.06 0.81 = 0.04
SVM 0.64 £ 0.01 0.64 +0.01 0.63 +0.01 0.63 £0.01 0.62 + 0.01
SVM logistic 0.69 £ 0.00 0.69 + 0.00 0.70 = 0.00 0.70 = 0.00 0.70 + 0.00
Decision tree 0.70 £ 0.02 0.72 £ 0.01 0.74 =0.00 0.74 & 0.00 0.75 & 0.01
Random forest 0.76 & 0.01 0.78 & 0.00 0.79 & 0.00 0.80 & 0.00 0.81 4+ 0.01

60% 70% 80% 90%
Model 1 0.98 £0.00 098 & 0.00 0.98 £ 0.00 0.99 £ 0.00
Model 2 0.70 £ 0.00 0.70 & 0.00 0.70 £ 0.00 0.70 £ 0.01
Model 3 0.97 £ 0.00 097 +0.00 0.97 £ 0.00 0.98 £+ 0.00
Model 4 0.82 £ 0.03 0.82 +£0.02 0.83 £0.02 0.82 + 0.02
SVM 0.62 £ 0.00 0.62 & 0.00 0.62 &+ 0.00 0.62 £ 0.01
SVM logistic 0.70 £ 0.00 0.70 & 0.00 0.70 & 0.00 0.70 £ 0.01
Decision tree 0.75 £ 0.01 0.76 £ 0.01 0.77 +£0.01 0.76 4+ 0.01
Random forest 0.81 £ 0.00 0.81 & 0.00 0.81 £+ 0.01 0.82 £ 0.01

TABLE II

EXPERIMENTAL RESULTS FOR HUMAN DATA SET. AUC IS USED AS A MEASURE FOR EVALUATING THE

PERFORMANCE, AVERAGE RESULTS (MEAN 1 STANDARD DEVIATION) ARE BEING REPORTED. THE RESULTS ARE

SHOWN FOR THE FOUR MODELS DISCUSSED IN THIS PAPER AND ENUMERATED AT THE END OF SECTION II:

MODEL 1 (FEATURES+TOPOLOGY), MODEL 2 (FEATURES ONLY), MODEL 3 (TOPOLOGY ONLY) AND MODEL 4
(TOPOLOGY-ENRICHED FEATURES). THE TABLE CONTAINS FOR COMPARISON THE RESULTS OBTAINED FOR FOUR

OTHER EXISTING METHODS: SVM, SVM LOGISTIC, DECISION TREE AND RANDOM FOREST. THE COLUMNS
REPRESENT DIFFERENT PERCENTAGE OF DATA CONSIDERED FOR TRAINING AND THE REST FOR TESTING.

10% 20% 30% 40% 50%
Model 1 092 £ 0.00 095 +0.00 096+ 0.00 0.96 £ 0.00 0.97 £ 0.00
Model 2 0.86 £ 0.00 0.86 = 0.00 0.86 + 0.00 0.86 £ 0.00 0.86 &+ 0.00
Model 3 0.86 £ 0.00 091 £0.00 093 £ 0.00 094 £0.00 0.95 +£ 0.00
Model 4 091 £0.00 094 £0.00 095+ 0.00 096 £ 0.00 0.96 + 0.00
SVM 0.80 £ 0.00 0.80 £0.00 0.81 £0.00 0.81 £0.00 0.81 £ 0.00
SVM logistic  0.85 £ 0.00 0.86 & 0.00 0.86 £ 0.00 0.86 = 0.00 0.86 £ 0.00
Decision tree  0.84 & 0.01 0.85 £ 0.01 0.86 & 0.00 0.87 £ 0.00 0.87 &+ 0.00
Random forest 0.92 £ 0.00 0.92 £ 0.00 092 £ 0.00 0.92 £ 0.00 0.93 + 0.00
60% 70% 80% 90%
Model 1 097 £0.00 097 £0.00 097 £0.00 0.97 £ 0.00
Model 2 0.86 +£ 0.00 0.86 = 0.00 0.86 = 0.00 0.86 £+ 0.00
Model 3 095 £0.00 0.96 £ 0.00 0.96 + 0.00 0.96 £+ 0.00
Model 4 097 £0.00 097 £0.00 0.97 £ 0.00 0.97 £ 0.00
SVM 0.81 £ 0.00 0.81 £0.00 0.81 £ 0.00 0.81 £ 0.00
SVM logistic ~ 0.86 £ 0.00 0.86 &= 0.00 0.86 £ 0.00 0.86 = 0.00
Decision Tree  0.87 & 0.00 0.88 &= 0.00 0.88 £ 0.00 0.88 £ 0.00
Random forest 0.93 + 0.00 0.93 £ 0.00 0.92 £+ 0.00 0.93 £ 0.00
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2) Influence of the Prior: Table III shows the perfor-
mance obtained for predicting PPIs using Model 1 for
a size of the training data of 1% from the total data
set and with three parameter settings for the prior. These
correspond to the three parameter settings for the log-
normal distribution based on which the histograms from
Figure 2 were generated. The performance is best for
mo = —3, 0o = 1 which corresponds to the top histogram
from Figure 2 and which is also a valid assumption for
the topology of PPI networks. The differences between the
parameter settings for mg, i.e., (—3,0,3) are huge and
correspond to completely different degree distributions. We
argue that the results are insensitive to small, reasonable
changes in the hyperparameters.

TABLE III
AUC SCORES (MEAN & STANDARD DEVIATION) FOR PREDICTING PPIS
USING MODEL | FOR THREE PARAMETER SETTINGS FOR THE
log-NORMAL DISTRIBUTION (1ST COLUMN). THE RESULTS ARE SHOWN
FOR THE YEAST DATA AND HUMAN DATA. THE SIZE OF THE TRAINING
DATA IS 1% FROM THE TOTAL DATA. 09 = 1 FOR ALL THREE SETTINGS
OF THE mo PARAMETER.

Prior parameter Yeast Human
settings data data
mo = —3 0.639 £ 0.014 0.863 £ 0.006
mo =0 0.595 £ 0.015 0.808 £+ 0.014
mo =3 0.566 £ 0.015 0.742 £+ 0.029

IV. DISCUSSIONS

In addition to the node degree distribution, networks in
general, and PPI networks in particular, can be charac-
terized by other global topological properties, including
the clustering coefficient, the network diameter, and the
average shortest path. [16] showed the existence in PPI
networks of highly inter-connected regions which are cor-
related with biological functions and large multi-protein
complexes. PPI networks are shown to adhere also to the
small world phenomenon, i.e., most pairs of proteins are
connected to each other by a short chain of links involving
several intermediate proteins. In addition to these global
topological properties, PPI networks are also characterized
by the so-called network motifs. A network motif is a small
subgraph which appears in the network significantly more
frequently than in a randomized network. Different types
of real-world networks have been shown to have different
motifs [65]. We believe that frameworks similar to the
one introduced here for incorporating information about
the node degree distribution, can be derived for including
other types of topological information. The so-called node
signature [32], which represents the topology in the neigh-
borhood of a node, might be useful in this direction. In the
same direction, other random graph generators have to be
investigated, like for example, exponential random graph
models [66]. The degree distribution of PPI networks is
in general described as scale-free, although this claim has
been recently questioned [18], [67]. However, most parties

agree that the degree distribution is very broad, hence the
existence of hubs, and the log-normal distribution that we
consider here can be fitted well to this situation. Another
property related to the nodes’ degree which has been
observed for PPI networks is the anti-correlation between
network degrees of interacting proteins [16]. This means
that hub-proteins avoid connecting to each other and instead
tend to interact with proteins of low connectivity/degree.
The random graph generator that we defined in this model
does not satisfy this property. Another option for further
improvement could be used to incorporate homology-based
features along the lines of [58].

When trying to add topological information, the compu-
tational complexity becomes a problem. In the framework
presented here, we managed to find some simplifying
assumptions which reduce the computational complexity
and at the same time yield a good performance. Due to
the sparsity of the feature vector which incorporates the
sparsity, and using an iterative scheme, the computational
complexity of the method could be simplified.

We have set the hyperparameters of the prior to roughly
match the known characteristics of PPI networks. This
already yields excellent results. A more involved approach
would estimate these parameters in an empirical Bayesian
approach, which is left for future work. The logistic regres-
sion classifier is a natural choice in our framework since
latent variables in the graph generator can be translated to
weights in the logistic regressor. Similar ideas may also
work in connection to other classifiers and may be used
for the reconstruction of other biological networks, such
as, metabolic, gene regulatory or signaling networks.

In this paper, we introduced a framework for predicting
PPI by considering the network structure information. This
is a Bayesian framework consisting of a prior distribution
over the network topology, likelihood terms and using
Bayes’ rule to compute the posterior distribution.
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